The ability to accurately constrain the secular record of high- and ultra-high pressure metamorphism on Earth is potentially hampered as these rocks are metastable and prone to retrogression, particularly during exhumation. Rutile is among the most widespread and best preserved minerals in high- and ultra-high pressure rocks and a hitherto untested approach is to use mineral inclusions within rutile to record such conditions. In this study, rutiles from three different high- and ultrahigh-pressure massifs have been investigated for inclusions. Rutile is shown to contain inclusions of high-pressure minerals such as omphacite, garnet and high silica phengite, as well as diagnostic ultrahigh-pressure minerals, including the first reported occurrence of exceptionally preserved monomineralic coesite in rutile from the Dora–Maira massif. Chemical comparison of inclusion and matrix phases show that inclusions generally represent peak metamorphic assemblages; although rare prograde phases such as titanite, omphacite and corundum have also been identified implying that rutile grows continuously during prograde burial and traps mineralogic evidence of this evolution. Pressure estimates obtained from mineral inclusions, when used in conjunction with Zr-in-rutile thermometry, can provide additional constraints on the metamorphic conditions of the host rock. This study demonstrates that rutile is an excellent repository for high- and ultra-high pressure minerals and that the study of mineral inclusions in rutile may profoundly change the way we investigate and recover evidence of such events in both detrital populations and partially retrogressed samples.
Elongate and deformed garnets from Glenelg, NW Scotland, occur within a thin shear zone transecting an eclogite body that has undergone partial retrogression to amphibolite facies at circa 700°C. Optical microscopy, back-scattered electron imaging, electron probe microanalysis and electron back-scatter diffraction reveal garnet sub-structures that are developed as a function of strain. Subgrains with low-angle misorientation boundaries occur at low strain and garnet orientations are dispersed, around rational crystallographic axes, across these boundaries. Towards high-strain areas, boundary misorientations increase and there is a loss of crystallographic control on misorientations, which tend towards random. In high-strain areas, a polygonal garnet microstructure is developed. The garnet orientations are randomly dispersed around the original single-crystal orientation. Some garnet grains are elongate and Ca-rich garnet occurs on the faces of elongate grains oriented normal to the foliation. Commonly, the garnet grains are admixed with matrix minerals, and, where in contact with other phases, garnet is well faceted. We suggest that individual garnet porphyroclasts record an evolution from low-strain conditions, where dislocation creep and recovery accommodated deformation, through increasing strain, where dynamic recrystallization occurred by subgrain rotation, to highest strains, where recrystallized grains were able to deform by diffusion creep assisted grain boundary sliding with associated rotations.
Felsic veins (plagiogranites) are distributed throughout the whole oceanic crust section and offer insight into late-magmatic/high temperature hydrothermal processes within the oceanic crust. Despite constituting only 0.5% of the oceanic crust section drilled in IODP Site 735B, they carry a significant budget of incompatible elements, which they redistribute within the crust. Such melts are saturated in accessory minerals, such as zircon, titanite and apatite, and often zircon is the only remaining phase that preserves magmatic composition and records processes of felsic melt formation and evolution. In this study, we analysed zircon from four depths in IODP Site 735B; they come from the oxide gabbro (depth approximately 250 m below sea floor) and plagiogranite (depths c. 500, 860, 940 m below sea floor). All zircons have similar εHf composition of c. 15 units indicating an isotopically homogenous source for the mafic magmas forming IODP Site 735B gabbro. Zircons from oxide gabbro are scarce and variable in composition consistent with their crystallization from melts formed by both fractionation of mafic magmas and hydrous remelting of gabbro cumulate. On the other hand, zircon from plagiogranite is abundant and each sample is characterized by compositional trends consistent with crystallization of zircon in an evolving melt. However, the trends are different between the plagiogranite at 500 m bsf and the deeper sections, which are interpreted as the record of plagiogranite formation by two processes: remelting of gabbro cumulate at 500 m bsf and fractionation at deeper sections. Zircon from both oxide gabbro and plagiogranite has δ18O from 3.5 to 6.0‰. Values of δ18O are best explained by redistribution of δ18O in a thermal gradient and not by remelting of hydrothermally altered crust. Tentatively, it is suggested that fractionation could be an older episode contemporaneous with gabbro crystallization and remelting could be a younger one, triggered by deformation and uplift of the crustal pile.
Abstract A zircon Hf isotope data set from Archean and Paleoproterozoic magmatic and metasedimentary rocks of the southern São Francisco craton (Brazil) is interpreted as evidence of accretionary and collisional plate tectonics since at least the Archean-Proterozoic boundary. During the Phanerozoic, accretionary and collisional orogenies are considered the end members of different plate tectonic settings, both involving preexisting stable continental lithosphere and consumption of oceanic crust. However, mechanisms for the formation of continental crust during the Archean and Paleoproterozoic are still debated, with the addition of magmatic rocks to the crust being explained by different geodynamic models. Hf isotopes can be used to quantify the proportion of magmatic addition into the crust: positive εHf values are usually interpreted as indications of magmatic input from the mantle, whereas crust-derived rocks show more negative εHf. We show that the crust of the amalgamated Paleoproterozoic tectonostratigraphic terranes that make up the southern São Francisco craton were generated from different proportions of mantle and crustal isotopic reservoirs. Plate tectonic processes are implied by a consistent sequence of events involving (1) the generation of juvenile subduction-related magmatic arc rocks, followed by (2) collisional orogenesis and remelting of older crust, and (3) post-collisional bimodal magmatism.
Xenotime-(Y) is a common accessory mineral in many igneous and high-grade metamorphic rocks, but it is very rare in carbonatite. Uniquely, at Lofdal, Namibia, xenotime-(Y) occurs in many carbonatite dykes. It mantles and replaces zircon in calcite carbonatite and also occurs as aggregates in ankerite carbonatite, aggregates associated with hematite, and crystals associated with monazite-(Ce) and synchysite-(Ce) in highly oxidized iron-rich calcite carbonatites. The paragenetic sequence places the xenotime-(Y) at the end of magmatic activity and certainly into the hydrothermal stage. A U-Pb date of 765 +/- 16 Ma (2 sigma) for xenotime-(Y) overgrowths on zircon obtained by LA-ICP-MS, the first dating of fine overgrowths of xenotime on zircon by this technique, confirms that the formation of xenotime-( Y) is directly related to the crystallization of the carbonatite and provides a date consistent with published dates for Lofdal and Oas syenites. The xenotime-(Y) is heavy-REE-enriched (chondrite-normalized graphs peak at Lu) but can be distinguished from xenotime-(Y) in granitic rocks by the lack of Eu anomaly, higher Gd (reaching > 6 wt%) and lower Yb (below 4 wt%). A monazite-(Ce) - xenotime-(Y) geothermometer developed for metamorphic rocks gives possible but relatively high temperatures of > 450 degrees C for the formation of xenotime-(Y). Overall, the whole-rock compositions are light-REE-enriched, in common with most carbonatites, but the degree of light REE enrichment is less than almost all published datasets (La/Yb-n at Lofdal ranges from 1 to 70), and at 0.5-0.8 wt%, the total REE content at Lofdal is also higher than in many carbonatites. These features are most important in controlling the production of xenotime-( Y) at Lofdal. Exploration for Y in carbonatites should therefore concentrate on rocks that have REE concentrations above 2000 ppm and La/Yb values lower than 70, similar to Lofdal, as well as weathered carbonatite regoliths and carbonatites subjected to extreme hydrothermal conditions, where Y can be concentrated.
Abstract The Archaean North Atlantic Craton underpins much of North America, Greenland and northern Europe, and incorporates the Earth's oldest extant continental crust. This paper reviews the current understanding of the region's crustal evolution, and considers our ability to investigate interrelationships between different fragments of the North Atlantic Craton. Detrital zircons from Mesoproterozoic to Cambrian basal sediments in NW Scotland have been re-examined in light of new data from the Archaean Tarbet supracrustal unit and the Palaeoproterozoic Rubha Ruadh granite. Hf model ages are recorded from 4160 to 1410 Ma, peaking at c. 3350 Ma, and are associated with U–Pb crystallization ages from 3670 to 1070 Ma, peaking at c. 2700 and 1700 Ma. The Rubha Ruadh granite is consistent with partial melting of Northern Region basement without contamination by juvenile magmas or supracrustal material, while the Tarbet Supracrustals record a minimum model age of c. 3200 Ma. Each of these units records Hf model ages that imply remelting of Eoarchaean (4000–3600 Ma) crust. Similar distributions of crystallization and model ages have been identified around the North Atlantic Craton, suggesting that Eoarchaean crust was once extensive in the region and constitutes the foundation of both Scotland and the North Atlantic Craton. Supplementary material: All new zircon U–Pb-Hf-O data from this study are available at www.geolsoc.org.uk/SUP18776 .