Abstract Uranium-lead (U-Pb) zircon dating establishes a late Cambrian (Drumian) protolith age of 503 ± 2 Ma for a trondhjemitic gneiss of the calc-alkaline Strathy Complex, northern Scottish Caledonides. Positive εHf and εNd values from trondhjemitic gneisses and co-magmatic amphibolites, respectively, and an absence of any inheritance in zircon populations support published geochemistry that indicates a juvenile origin distal from Laurentia. In order to account for its present location within a stack of Laurentia-derived thrust sheets, we interpret the complex as allochthonous and located along a buried suture. We propose that a microcontinental ribbon was detached from Laurentia during late Neoproterozoic to Cambrian rifting; the intervening oceanic tract closed by subduction during the late Cambrian and formed a juvenile arc, the protolith of the Strathy Complex. The microcontinental ribbon was reattached to Laurentia during the Grampian orogeny, which transported the Strathy Complex as a tectonic slice within a nappe stack. Peak metamorphic conditions for the Strathy Complex arc (650–700 °C, 0.6–0.75 GPa) are intermediate in pressure between those published previously for Grampian mineral assemblages in structurally overlying low-pressure migmatites (670–750 °C, <0.4 GPa) that we deduce to have been derived from an adjacent backarc basin, and structurally underlying upper amphibolite rocks (650–700 °C, 1.1–1.2 GPa) that we interpret to represent the partially subducted Laurentian margin. This scenario compares with that of the northern Appalachian Mountains and Norway where microcontinental blocks are interpreted to have their origins in detachment from passive margins of the Iapetus Ocean during Cambrian rifting and to have been re-amalgamated during Caledonian orogenesis.
Four first-order (Hadean, Archean, Proterozoic and Phanerozoic eon) and nine second-order (Paleoarchean, Mesoarchean, Neoarchean, Paleoproterozoic, Mesoproterozoic, Neoproterozoic, Paleozoic, Mesozoic and Cenozoic era) units continue to provide intuitive subdivision of geological time. Major transitions in Earth’s tectonic, biological and environmental history occurred at approximately 2.5-2.3, 1.8-1.6, 1.0-0.8 and 0.7-0.5 Ga, and so future rock-based subdivision of pre-Cryogenian time, eventually by use of global stratotypes (GSSPs), will likely require only modest deviation from current chronometric boundaries (GSSAs) at 2.5, 1.6 and 1.0 Ga, respectively. Here we argue that removal of GSSAs could be expedited by establishing event-based concepts and provisional, approximate ages for eon-, era- and period-level subdivisions as soon as practicable, in line with ratification of an Ediacaran GSSP in 2004 and chronostratigraphic definition of the Cryogenian Period at c. 720 Ma in 2012. We also outline the geological basis behind current chronometric divisions, explore how they might differ in any future rock-based scheme, identify where major issues might arise during the transition, and outline where some immediate changes to the present scheme could be easily updated/formalised, as a framework for future GSSP development. In line with these aims, we note that the currently recommended four-fold Archean subdivision has not been formally ratified and agree with previous workers that it could be simplified to an informal three-fold subdivision, pending more detailed analysis. Although the ages of period boundaries would inevitably change in a more closely rock-based or chronostratigraphic scheme, we support retention of all currently ratified period names. Existing period names, borrowed from the Greek, were chosen to delimit natural phenomena of global reach. Any new global nomenclature ought to follow this lead for consistency, and so we discourage the use of supercontinent names (e.g. Rodinian, Columbian) and regional phenomena, however exceptional. In this regard, we tentatively suggest that a new period (e.g. the ‘Kratian’), could precede the Tonian as the first period of the Neoproterozoic Era and we concur with previous authors that the existing Siderian Period (named for banded iron formations) would fit better as a chronostratigraphically defined period of the terminal Archean. Indeed, all pre-Cryogenian subdivisions will need more conceptual grounding in any future chronostratigraphic scheme. We conclude that improved rock-based division of the Proterozoic Eon would likely comprise a three-fold, period-level subdivision of the Paleoproterozoic Era (Oxygenian Rhyacian, Orosirian), a four-fold subdivision of the Mesoproterozoic Era (Statherian, Calymmian, Ectasian, Stenian) and potentially four-fold subdivision of the Neoproterozoic Era (pre-Tonian ‘Kratian’, Tonian, Cryogenian and Ediacaran). Future refinements towards an improved rock-based pre-Cryogenian geological time scale could be propoosed by new international bodies to cover the 1) pre-Ediacaran Neoproterozoic, 2) Mesoproterozoic, 3) Paleoproterozoic and 4) Archean (and Hadean) as few experts and disciplines can speak to the entire pre-Cryogenian rock record.
Peak and retrograde P – T conditions of Grenville-age eclogites from the Glenelg–Attadale Inlier of the northwest Highlands of Scotland are presented. Peak conditions are estimated as c . 20 kbar and 750–780°C, in broad agreement with previous work. The eclogites subsequently followed a steep decompression path to c . 13 kbar and 650–700°C during amphibolite facies retrogression. Peak eclogite facies metamorphism occurred > 1080 Ma and retrogression at c . 995 Ma, suggesting fairly sluggish uplift rates of < 0.3 km/Ma and cooling rates of < 1.25°C/Ma, when compared with other parts of the Grenville orogeny and/or modern orogens. However, current poor constraints on the timing of peak metamorphism mean that these rates cannot be used to interpret the geodynamic evolution of this part of the orogen. The P – T – t data, together with petrology and the field relationships between the basement rocks of the Glenelg–Attadale Inlier and the overlying Moine Supergroup, mean that it is difficult to support the currently held view that an unconformable relationship exists between the two. It is suggested that more data are required in order to re-interpret the Neoproterozic tectonic evolution of the northwest Highlands of Scotland.
Plate tectonics exerts a first-order control on the interaction between Earth’s reservoirs. Atmospherically-altered surface materials are recycled to the mantle via subduction, while volatiles from the mantle are liberated to the atmosphere via volcanism. This cycle regulates much of Earth’s climate, ocean levels and metallogenetic processes within the continental crust. However, the interplay between Earth’s atmospheric changes and the geochemical evolution of mantle-derived magmas has remained obscure for the ancient geological history. This has led to multiple conflicting models for the crustal evolution in the early Earth. A time-integrated evolution of the mantle-crust-atmosphere-hydrosphere interaction is yet to be fully established. For instance, secular change of the ocean and atmosphere system is evident from several proxies but the feedback of these changes to magmatic and geochemical processes in the lithosphere remain unclear. Moreover, no clear consensus has been reached on the timing of modern-style plate tectonic initiation and the evolution of net growth of the continental crust. To explain overt and cryptic global trends in the geochemistry of magmatic rocks, a better understanding of mineral reactions and how these control trace element evolution in magmas at the lithosphere-scale is paramount. For example, the elemental and isotopic composition of apatite inclusions hosted by zircon offers a way to better understand the evolution of magmas and, to some extent, the nature of magma sources. These proxies rely on the robust data acquisition of other isotope systems with different geochemical behaviour, such as U-Pb and Lu-Hf analyses in the host zircon crystal. A combination of methods and proxies including the elemental composition of apatite via EPMA and the oxygen fugacity based on sulphur speciation via μ-XANES of apatite inclusions was applied to ancient sub-arc magmas formed in regions akin to modern subduction zones. These magmas share a common mantle source but crystallised more than 200 million years apart (at 2.35 and 2.13 billion years ago). Importantly, they bracket the Great Oxidation Event, when atmospheric oxygen levels increased by five orders of magnitude, causing a permanent and dramatic change in Earth’s surface chemistry. As such, these sub-arc magmas were investigated as potential tracers of the interaction between Earth’s atmosphere and the mantle. The information from several inclusions from co-magmatic rocks can then be interpreted in the light of U-Pb, Lu-Hf, trace elements and oxygen isotope analyses of the host zircon grains. Altogether, the results show a shift in oxygen fugacity of sub-arc magmas across the Great Oxidation Event. The change in oxygen fugacity is thought to be caused by recycling into the mantle of sediments that had been geochemically altered at the surface by the increase in atmospheric oxygen levels. This study opens a wide window of opportunities for the time-integrated investigation of the interaction between atmosphere and oceans with the evolving terrestrial mantle.
The ability to accurately constrain the secular record of high- and ultra-high pressure metamorphism on Earth is potentially hampered as these rocks are metastable and prone to retrogression, particularly during exhumation. Rutile is among the most widespread and best preserved minerals in high- and ultra-high pressure rocks and a hitherto untested approach is to use mineral inclusions within rutile to record such conditions. In this study, rutiles from three different high- and ultrahigh-pressure massifs have been investigated for inclusions. Rutile is shown to contain inclusions of high-pressure minerals such as omphacite, garnet and high silica phengite, as well as diagnostic ultrahigh-pressure minerals, including the first reported occurrence of exceptionally preserved monomineralic coesite in rutile from the Dora–Maira massif. Chemical comparison of inclusion and matrix phases show that inclusions generally represent peak metamorphic assemblages; although rare prograde phases such as titanite, omphacite and corundum have also been identified implying that rutile grows continuously during prograde burial and traps mineralogic evidence of this evolution. Pressure estimates obtained from mineral inclusions, when used in conjunction with Zr-in-rutile thermometry, can provide additional constraints on the metamorphic conditions of the host rock. This study demonstrates that rutile is an excellent repository for high- and ultra-high pressure minerals and that the study of mineral inclusions in rutile may profoundly change the way we investigate and recover evidence of such events in both detrital populations and partially retrogressed samples.
Felsic veins (plagiogranites) are distributed throughout the whole oceanic crust section and offer insight into late-magmatic/high temperature hydrothermal processes within the oceanic crust. Despite constituting only 0.5% of the oceanic crust section drilled in IODP Site 735B, they carry a significant budget of incompatible elements, which they redistribute within the crust. Such melts are saturated in accessory minerals, such as zircon, titanite and apatite, and often zircon is the only remaining phase that preserves magmatic composition and records processes of felsic melt formation and evolution. In this study, we analysed zircon from four depths in IODP Site 735B; they come from the oxide gabbro (depth approximately 250 m below sea floor) and plagiogranite (depths c. 500, 860, 940 m below sea floor). All zircons have similar εHf composition of c. 15 units indicating an isotopically homogenous source for the mafic magmas forming IODP Site 735B gabbro. Zircons from oxide gabbro are scarce and variable in composition consistent with their crystallization from melts formed by both fractionation of mafic magmas and hydrous remelting of gabbro cumulate. On the other hand, zircon from plagiogranite is abundant and each sample is characterized by compositional trends consistent with crystallization of zircon in an evolving melt. However, the trends are different between the plagiogranite at 500 m bsf and the deeper sections, which are interpreted as the record of plagiogranite formation by two processes: remelting of gabbro cumulate at 500 m bsf and fractionation at deeper sections. Zircon from both oxide gabbro and plagiogranite has δ18O from 3.5 to 6.0‰. Values of δ18O are best explained by redistribution of δ18O in a thermal gradient and not by remelting of hydrothermally altered crust. Tentatively, it is suggested that fractionation could be an older episode contemporaneous with gabbro crystallization and remelting could be a younger one, triggered by deformation and uplift of the crustal pile.