Geology, geochronology and stable isotope studies at the Baijian Fe-(Co) skarn deposit, eastern China, with implications for ore genesis and regional Fe skarn metallogeny
4
Citation
53
Reference
10
Related Paper
Citation Trend
Abstract:
The Handan-Xingtai district, situated in the central part of the North China craton, is one of the most important concentrations of Fe skarns in China. Baijian is the largest Fe skarn deposit in this district with significant Fe reserves being newly identified. This deposit is spatially related with a monzodiorite stock intruding the Middle Ordovician evaporate-bearing marine carbonates, with Fe mineralization occurring in the contact zone or within carbonate wall rocks. This paper conducts a comprehensive investigation encompassing geological, mineralogical, geochronological, and stable isotope analyses of the Baijian deposit. The goal is to provide insights into its formation and mineralization processes and offer a broader understanding of regional Fe metallogeny. The skarn mineralogy in the Baijian deposit is predominantly characterized by Mg-rich minerals such as diopside, tremolite, serpentine, and phlogopite. Magnetite is the dominant metallic mineral, featuring low Ti contents (<0.11 wt%) and high Fe concentrations (>66.59 wt%), indicative of a hydrothermal origin. The majority of the magnetite trace element data are plotted in the skarn field on the Al + Mn versus Ti + V diagram. Pyrite, a notable component in ores, exhibits considerable variations in Co and Ni concentrations, with Co/Ni ratio generally higher than unity. Phlogopite 40Ar–39Ar dating constrains the formation of the Baijian Fe skarn deposit at ca. 128 Ma, aligning with zircon U-Pb ages (128.8 ± 0.9 Ma) of the associated monzodiorite. This temporal congruence suggests a genetic relationship between the magmatism and skarn mineralization. Combined with previous published geochronological data, this study identifies an increasing trend in Fe mineralization intensity within the Handan-Xingtai district, spanning from ca. 137 to 128 Ma. Geological and oxygen isotopic evidence advocates for a magmatic origin of the ore-forming fluids at the Baijian deposit. The δ18O values of these fluids experience elevation through interaction with carbonate wall rocks. The pronouncedly high δ34S values of pyrite (>16.1 ‰) in the Baijian magnetite ores underscore a substantial sulfur contribution from sulfate in evaporate beds. Drawing on geological, mineralogical, and isotopic evidence, the study suggests that the interaction between magmatic fluids and evaporate-bearing carbonate rocks plays an important role in magnetite precipitation at the Baijian deposit. This interaction serves to reduce fluid acidity and facilitate the oxidation of ferrous iron (Fe2+). The Fe skarn deposits in Handan-Xingtai district are mostly hosted in middle Ordovician evaporite-bearing carbonate strata with ore-related sulfides exhibiting strong 34S enrichment (δ34S > 10 ‰). The interaction of magmatic fluids with evaporate-bearing carbonates is likely a common process responsible for magnetite deposition in the Fe skarn deposits.Keywords:
Metallogeny
Ore genesis
Geochronology
Metasomatism
Phlogopite
The Handan-Xingtai district, situated in the central part of the North China craton, is one of the most important concentrations of Fe skarns in China. Baijian is the largest Fe skarn deposit in this district with significant Fe reserves being newly identified. This deposit is spatially related with a monzodiorite stock intruding the Middle Ordovician evaporate-bearing marine carbonates, with Fe mineralization occurring in the contact zone or within carbonate wall rocks. This paper conducts a comprehensive investigation encompassing geological, mineralogical, geochronological, and stable isotope analyses of the Baijian deposit. The goal is to provide insights into its formation and mineralization processes and offer a broader understanding of regional Fe metallogeny. The skarn mineralogy in the Baijian deposit is predominantly characterized by Mg-rich minerals such as diopside, tremolite, serpentine, and phlogopite. Magnetite is the dominant metallic mineral, featuring low Ti contents (<0.11 wt%) and high Fe concentrations (>66.59 wt%), indicative of a hydrothermal origin. The majority of the magnetite trace element data are plotted in the skarn field on the Al + Mn versus Ti + V diagram. Pyrite, a notable component in ores, exhibits considerable variations in Co and Ni concentrations, with Co/Ni ratio generally higher than unity. Phlogopite 40Ar–39Ar dating constrains the formation of the Baijian Fe skarn deposit at ca. 128 Ma, aligning with zircon U-Pb ages (128.8 ± 0.9 Ma) of the associated monzodiorite. This temporal congruence suggests a genetic relationship between the magmatism and skarn mineralization. Combined with previous published geochronological data, this study identifies an increasing trend in Fe mineralization intensity within the Handan-Xingtai district, spanning from ca. 137 to 128 Ma. Geological and oxygen isotopic evidence advocates for a magmatic origin of the ore-forming fluids at the Baijian deposit. The δ18O values of these fluids experience elevation through interaction with carbonate wall rocks. The pronouncedly high δ34S values of pyrite (>16.1 ‰) in the Baijian magnetite ores underscore a substantial sulfur contribution from sulfate in evaporate beds. Drawing on geological, mineralogical, and isotopic evidence, the study suggests that the interaction between magmatic fluids and evaporate-bearing carbonate rocks plays an important role in magnetite precipitation at the Baijian deposit. This interaction serves to reduce fluid acidity and facilitate the oxidation of ferrous iron (Fe2+). The Fe skarn deposits in Handan-Xingtai district are mostly hosted in middle Ordovician evaporite-bearing carbonate strata with ore-related sulfides exhibiting strong 34S enrichment (δ34S > 10 ‰). The interaction of magmatic fluids with evaporate-bearing carbonates is likely a common process responsible for magnetite deposition in the Fe skarn deposits.
Metallogeny
Ore genesis
Geochronology
Metasomatism
Phlogopite
Cite
Citations (4)
Phlogopite
Metasomatism
Carbonatite
Xenolith
Asthenosphere
Cite
Citations (3)
Summary First results in the phlogopite + magnesite (KMASH-CO2) system demonstrate that a potassiumbearing fluid will be the metasomatic agent at sub-continental-lithospheric-mantle conditions with a continental geotherm of 40 mWm -2 . In this case, phlogopite can be stable to a depth of 200 km in the presence of carbonate, and will coexist with potassic fluids. Assuming a hotter geotherm of 44 mWm -2 , these fluids can be present to a depth of about 180 km. Beyond this depth, at the base of a thick sub-continental lithospheric mantle, a hydrous, potassium- and CO2-rich silicate melt would be the metasomatic agent. In this system, garnet is present above solidus as a residual phase, which implies that a K-CO2-H2O-enriched metasomatic fluid or melt could react with garnet peridotite to form phlogopite.
Phlogopite
Metasomatism
Peridotite
Solidus
Cite
Citations (1)
Phlogopite
Metasomatism
Amphibole
Cite
Citations (48)
Skarns, ores and hydrothermally metasomatic rocks associated with some major skarn iron deposits in China contain abundant volatile components, such as F, Cl and H2O. Alkaline (sodic or potassic) metasomatism is obviously evident in the magmatic and other alumo-silicate wall rocks. They may serve as important ore-searching indicators. In this paper, the probable source of iron fluids, transport forms of iron and conditions of precipitation of magnetite are also discussed. From the studies of major skarn iron deposits in China, the authors hold that volatile components, such as F, Cl, H2O, etc., and alkaline (K, Na) metasomatism play a very important role in the formation of this type of iron deposits[1, 2, 3].
Metasomatism
Ore genesis
Iron ore
Cite
Citations (2)
Phlogopite
Metasomatism
Ilmenite
Rutile
Chromite
Cite
Citations (2)
Phlogopite is widely accepted as a major mineral indicator of the modal metasomatism in the upper mantle within a very wide P–T range. The paper reviews data on various phlogopite-forming reactions in upper-mantle peridotites. The review includes both descriptions of naturally occurring reactions and results of experiments that model some of these reactions. Relations of phlogopite with other potassic phases, such as K-richterite, sanidine and K-titanates, are discussed. These data are taken as a basis for thermodynamic modeling of the phlogopite-forming reactions for specific mantle rocks in terms of log(aH2O) − log(aK2O) diagrams (pseudosections) using the Gibbs free energy minimization. These diagrams allow estimation of potassium-water activity relations during metasomatic transformations of mantle rocks, prediction sequences of mineral assemblages with respect to these parameters and comparison of metasomatic processes in the rocks of different composition. This approach is illustrated by examples from peridotite xenoliths from kimberlites.
Phlogopite
Metasomatism
Peridotite
Xenolith
Cite
Citations (36)
Phlogopite
Metasomatism
Peridotite
Xenolith
Carbonatite
Incompatible element
Cite
Citations (30)