Assessing long-term tephra fallout hazard in Southern Italy from Neapolitan volcanoes
Silvia MassaroManuel StocchiBeatriz Martínez MontesinosLaura SandriJacopo SelvaRoberto SulpizioBiagio GiaccioMassimiliano MoscatelliEdoardo PeronaceMarco NocentiniRoberto IsaiaManuel TítosPierfrancesco DellinoGiuseppe NasoAntonio Costa
8
Citation
46
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract. Nowadays, tephra fallout hazard is based on coupling the physical modeling of the tephra dispersion processes with a probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position and meteorological conditions. In this framework, we present a prototypal methodology to carry out a multi-volcano long-term tephra fallout hazard assessment in Southern Italy from the active Neapolitan volcanoes: Somma-Vesuvius, Campi Flegrei, and Ischia. FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1,500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, in order to quantify the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-years exposure time, and the relative epistemic uncertainty. This work provides, for the first time, a multi-volcano probabilistic hazard analysis for tephra fallout, fully comparable with those used for seismic phenomena and other natural disasters in which multiple sources are integrated together, and it accounts for potential changes in regimes of each single considered volcano. This allows us to discuss also how the full information can be traced back to provide specific information about the prevalence of different volcanoes and eruptive style in the different target areas, based on hazard disaggregation. The methodology is applicable to any other volcanic areas or over different exposure times.Keywords:
Volcanic hazards
Hazard map
While volcanic events are commonly characterized by multiple eruptive stages, most probabilistic tephra hazard analyses only simulate the major (paroxysmal) stage. In this study, we reconsider this simplified treatment by comparing hazard outcomes from simulated single‐ and multistage eruption sequences, using the Okataina Volcanic Center (OVC) in New Zealand as a case study. Our study draws upon geological evidence particular to the OVC as well as generalized patterns of eruptive behavior from other analogous volcanic centers. Exceedance probabilities of simulated tephra thickness, the cumulative duration of explosive behavior, and the duration of the entire eruptive sequence were all compared. Multistage simulations show an increased hazard with the greatest differences lying close to the vent for long duration and high thickness thresholds and at intermediate distances between the vent and the maximum extent of the deposit for lower thickness and duration thresholds. Multiple explosive stages increase the likelihood of an event lasting longer than 1 month by up to sevenfold and, for given low‐probability events, accumulated tephra thicknesses in some locations may increase by 1 order of magnitude and impact up to 22% more of New Zealand's North Island. Given our understanding of the eruptive history of the Okataina Volcanic Center, multistage simulations provide a better understanding of the potential hazard from this source.
Volcanic hazards
Hazard map
Cite
Citations (28)
In the case of the volcanic eruption of Mount Usu in 2000, there were no victims because the evacuation activities were carried out smoothly, as people made great use of the hazard map of Usu Volcano as a source of information. Also, the Mount Fuji Hazard Map Committee started work in 2001, scheduled to publicize the results in the near future. Although volcanic hazard maps have only recently captured the attention to people in Japan, they have been used in various overseas countries for many years. This paper summarizes the definition of volcanic hazard maps and the method of making volcanic hazard maps, classifies and analyzes the collected foreign cases, and introduces representative examples.
Hazard map
Mount
Volcanic hazards
Geologic hazards
Vulcanian eruption
Cite
Citations (2)
Abstract. Nowadays, modeling of tephra fallout hazard is coupled with probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position, and meteorological conditions. In this framework, we present a prototypal methodology to carry out the long-term tephra fallout hazard assessment in southern Italy from the active Neapolitan volcanoes: Somma–Vesuvius, Campi Flegrei, and Ischia. The FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, relying on a Bayesian procedure, in order to provide the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-year exposure time. Our results are expressed in terms of absolute mean hazard maps considering different levels of aggregation, from the impact of each volcanic source and eruption size class to the quantification of the total hazard. This work provides, for the first time, a multi-volcano probabilistic hazard assessment posed by tephra fallout, comparable with those used for seismic phenomena and other natural disasters. This methodology can be applied to any other volcanic areas or over different exposure times, allowing researchers to account for the eruptive history of the target volcanoes that, when available, could include the occurrence of less frequent large eruptions, representing critical elements for risk evaluations.
Volcanic hazards
Vulcanian eruption
Cite
Citations (5)
Abstract. Nowadays, tephra fallout hazard is based on coupling the physical modeling of the tephra dispersion processes with a probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position and meteorological conditions. In this framework, we present a prototypal methodology to carry out a multi-volcano long-term tephra fallout hazard assessment in Southern Italy from the active Neapolitan volcanoes: Somma-Vesuvius, Campi Flegrei, and Ischia. FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1,500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, in order to quantify the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-years exposure time, and the relative epistemic uncertainty. This work provides, for the first time, a multi-volcano probabilistic hazard analysis for tephra fallout, fully comparable with those used for seismic phenomena and other natural disasters in which multiple sources are integrated together, and it accounts for potential changes in regimes of each single considered volcano. This allows us to discuss also how the full information can be traced back to provide specific information about the prevalence of different volcanoes and eruptive style in the different target areas, based on hazard disaggregation. The methodology is applicable to any other volcanic areas or over different exposure times.
Volcanic hazards
Cite
Citations (0)
Abstract. Nowadays, tephra fallout hazard is based on coupling the physical modeling of the tephra dispersion processes with a probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position and meteorological conditions. In this framework, we present a prototypal methodology to carry out a multi-volcano long-term tephra fallout hazard assessment in Southern Italy from the active Neapolitan volcanoes: Somma-Vesuvius, Campi Flegrei, and Ischia. FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1,500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, in order to quantify the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-years exposure time, and the relative epistemic uncertainty. This work provides, for the first time, a multi-volcano probabilistic hazard analysis for tephra fallout, fully comparable with those used for seismic phenomena and other natural disasters in which multiple sources are integrated together, and it accounts for potential changes in regimes of each single considered volcano. This allows us to discuss also how the full information can be traced back to provide specific information about the prevalence of different volcanoes and eruptive style in the different target areas, based on hazard disaggregation. The methodology is applicable to any other volcanic areas or over different exposure times.
Volcanic hazards
Cite
Citations (0)