logo
    Multistage volcanic events: Tephra hazard simulations for the Okataina Volcanic Center, New Zealand
    28
    Citation
    35
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    While volcanic events are commonly characterized by multiple eruptive stages, most probabilistic tephra hazard analyses only simulate the major (paroxysmal) stage. In this study, we reconsider this simplified treatment by comparing hazard outcomes from simulated single‐ and multistage eruption sequences, using the Okataina Volcanic Center (OVC) in New Zealand as a case study. Our study draws upon geological evidence particular to the OVC as well as generalized patterns of eruptive behavior from other analogous volcanic centers. Exceedance probabilities of simulated tephra thickness, the cumulative duration of explosive behavior, and the duration of the entire eruptive sequence were all compared. Multistage simulations show an increased hazard with the greatest differences lying close to the vent for long duration and high thickness thresholds and at intermediate distances between the vent and the maximum extent of the deposit for lower thickness and duration thresholds. Multiple explosive stages increase the likelihood of an event lasting longer than 1 month by up to sevenfold and, for given low‐probability events, accumulated tephra thicknesses in some locations may increase by 1 order of magnitude and impact up to 22% more of New Zealand's North Island. Given our understanding of the eruptive history of the Okataina Volcanic Center, multistage simulations provide a better understanding of the potential hazard from this source.
    Keywords:
    Volcanic hazards
    Hazard map
    While volcanic events are commonly characterized by multiple eruptive stages, most probabilistic tephra hazard analyses only simulate the major (paroxysmal) stage. In this study, we reconsider this simplified treatment by comparing hazard outcomes from simulated single‐ and multistage eruption sequences, using the Okataina Volcanic Center (OVC) in New Zealand as a case study. Our study draws upon geological evidence particular to the OVC as well as generalized patterns of eruptive behavior from other analogous volcanic centers. Exceedance probabilities of simulated tephra thickness, the cumulative duration of explosive behavior, and the duration of the entire eruptive sequence were all compared. Multistage simulations show an increased hazard with the greatest differences lying close to the vent for long duration and high thickness thresholds and at intermediate distances between the vent and the maximum extent of the deposit for lower thickness and duration thresholds. Multiple explosive stages increase the likelihood of an event lasting longer than 1 month by up to sevenfold and, for given low‐probability events, accumulated tephra thicknesses in some locations may increase by 1 order of magnitude and impact up to 22% more of New Zealand's North Island. Given our understanding of the eruptive history of the Okataina Volcanic Center, multistage simulations provide a better understanding of the potential hazard from this source.
    Volcanic hazards
    Hazard map
    Citations (28)
    Abstract. Nowadays, modeling of tephra fallout hazard is coupled with probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position, and meteorological conditions. In this framework, we present a prototypal methodology to carry out the long-term tephra fallout hazard assessment in southern Italy from the active Neapolitan volcanoes: Somma–Vesuvius, Campi Flegrei, and Ischia. The FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, relying on a Bayesian procedure, in order to provide the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-year exposure time. Our results are expressed in terms of absolute mean hazard maps considering different levels of aggregation, from the impact of each volcanic source and eruption size class to the quantification of the total hazard. This work provides, for the first time, a multi-volcano probabilistic hazard assessment posed by tephra fallout, comparable with those used for seismic phenomena and other natural disasters. This methodology can be applied to any other volcanic areas or over different exposure times, allowing researchers to account for the eruptive history of the target volcanoes that, when available, could include the occurrence of less frequent large eruptions, representing critical elements for risk evaluations.
    Volcanic hazards
    Vulcanian eruption
    The 1986 eruption of Mount St. Augustine, an island volcano in Cook Inlet of southcentral Alaska, provided a good test of previously prepared volcanic hazard models for that volcano. The 1986 eruption was generally similar to other historic eruptions. An initial vent‐clearing explosive eruptive phase in late March of 1986 removed part of the dome emplaced at the end of the last eruption (1976). Pyroclastic flows reached the sea during this phase, and airborne ash spread over much of Cook Inlet, including Anchorage. The initial explosive phase was followed by dome growth which continued over much of the spring and late summer of 1986. Pyroclastic flows, much less intense than those of March 1986, accompanied dome growth. Volcanic hazards from the 1986 eruption were generally within the limits set by previous hazard studies. Pyroclastic flows were confined to a very high hazard zone on and immediately surrounding Augustine Island. Airborne ash and volcanic gases presented a moderate hazard over much of Cook Inlet and presented a serious hazard to aircraft encountering the ash plume. The potential for a large debris avalanche that could enter Cook Inlet and result in a tsunami existed during the 1986 eruption. Previous work on Mount St. Augustine underestimated the landslide‐related hazard, and more work is needed to assess fully the potential of this hazard. These new data, when incorporated into existing hazard assessments, will improve an already successful hazard evaluation for Mount St. Augustine. Assuming that Augustine Island will never be developed, far‐field hazards associated with ashfalls and tsunamis are the most serious. Real‐time satellite and radar imagery can potentially provide adequate warnings about ash plumes, but the warning time for tsunami hazards is short. Improvements in the tsunamis warning system are needed to reduce the hazard.
    Volcanic hazards
    Hazard map
    Volcanic ash
    Vulcanian eruption
    Citations (36)
    Sediment cores from lakes and bogs in the Río Cisnes valley contain tephra from explosive eruptions of volcanoes in the southern part of the Andean Southern Volcanic Zone (SSVZ). These tephra, which thicken and coarsen to the west, are attributed to eruptions from Melimoyu, Mentolat, Hudson, and potentially either Macá, Cay or one of the many minor eruptive centers (MEC) located both along the Liquiñe-Ofqui Fault Zone (LOFZ) and surrounding the major volcanoes. Correlation of the tephra between two new cores in the lower Río Cisnes valley, and amongst other cores previously described from the region, and source volcano identification for the tephra, has been done using lithostratigraphic data (tephra layer thickness and grain size), petrography (tephra glass color, vesicle morphology, and type and abundance of phenocryst phases), and by comparison of bulk tephra trace-element characteristics with previously published whole-rock and bulk tephra chemical analysis. Four tephras in these cores are attributed to eruptions of Mentolat, four to eruptions from Melimoyu, one possibly to Hudson, and six cannot be assigned to a specific source volcano. Some of these tephra correspond to pyroclastic tephra fall deposits previously observed in outcrop, including the MEL2 eruption of Melimoyu and the MEN1 eruption of Mentolat. However, others have not been previously observed and represent the products of newly identified small to medium sized eruptions from volcanoes of the SSVZ. These results provide new information concerning the frequency and magnitude of explosive eruption of SSVZ volcanoes and contribute to the evaluation of volcanic hazards in the region.
    Tephrochronology
    Lapilli
    Volcanic hazards
    Phenocryst
    Volcanic glass
    Citations (19)
    Abstract. Nowadays, tephra fallout hazard is based on coupling the physical modeling of the tephra dispersion processes with a probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position and meteorological conditions. In this framework, we present a prototypal methodology to carry out a multi-volcano long-term tephra fallout hazard assessment in Southern Italy from the active Neapolitan volcanoes: Somma-Vesuvius, Campi Flegrei, and Ischia. FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1,500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, in order to quantify the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-years exposure time, and the relative epistemic uncertainty. This work provides, for the first time, a multi-volcano probabilistic hazard analysis for tephra fallout, fully comparable with those used for seismic phenomena and other natural disasters in which multiple sources are integrated together, and it accounts for potential changes in regimes of each single considered volcano. This allows us to discuss also how the full information can be traced back to provide specific information about the prevalence of different volcanoes and eruptive style in the different target areas, based on hazard disaggregation. The methodology is applicable to any other volcanic areas or over different exposure times.
    Volcanic hazards
    Citations (0)
    Abstract. Nowadays, tephra fallout hazard is based on coupling the physical modeling of the tephra dispersion processes with a probabilistic analysis that takes into account the natural variability of the volcanic phenomena in terms of eruption probability, eruption sizes, vent position and meteorological conditions. In this framework, we present a prototypal methodology to carry out a multi-volcano long-term tephra fallout hazard assessment in Southern Italy from the active Neapolitan volcanoes: Somma-Vesuvius, Campi Flegrei, and Ischia. FALL3D model (v.8.0) has been used to run thousands of numerical simulations (1,500 per eruption size class), considering the ECMWF ERA5 meteorological dataset over the last 30 years. The output in terms of tephra ground load has been processed within a new workflow for large-scale, high-resolution volcanic hazard assessment, in order to quantify the mean annual frequency with which the tephra load at the ground exceeds given critical thresholds at a target site within a 50-years exposure time, and the relative epistemic uncertainty. This work provides, for the first time, a multi-volcano probabilistic hazard analysis for tephra fallout, fully comparable with those used for seismic phenomena and other natural disasters in which multiple sources are integrated together, and it accounts for potential changes in regimes of each single considered volcano. This allows us to discuss also how the full information can be traced back to provide specific information about the prevalence of different volcanoes and eruptive style in the different target areas, based on hazard disaggregation. The methodology is applicable to any other volcanic areas or over different exposure times.
    Volcanic hazards
    Citations (0)