South Tarim tied to north India on the periphery of Rodinia and Gondwana and implications for the evolution of two supercontinents
23
Citation
35
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract Constraining the positions of, and interrelationships between, Earth's major continental blocks has played a major role in validating the concept of the supercontinent cycle. Minor continental fragments can provide additional key constraints on modes of supercontinent assembly and dispersal. The Tarim craton has been placed both at the core of Rodinia or on its periphery, and differentiating between the two scenarios has widespread implications for the breakup of Rodinia and subsequent assembly of Gondwana. In the South Tarim terrane, detrital zircon grains from Neoproterozoic–Silurian strata display two dominant populations at 950–750 and 550–450 Ma. Similarly, two main peaks at 1000–800 and 600–490 Ma characterize Neoproterozoic–Ordovician strata in northern India. Moreover, the two dominant peaks of South Tarim and north India lag two global peaks at 1200–1000 and 650–500 Ma, which reflect Rodinia and Gondwana assembly, arguing against a position within the heart of the two supercontinents. Ages and Hf isotopes of Tarim's detrital zircons argue for a position on the margin of both supercontinents adjacent to north India with periodic dispersal through opening and closing of small ocean basins (e.g., the Proto-Tethys). Alternating tectonic transitions between advancing and retreating subduction in North Tarim coincide with periodic drift of South Tarim from north India in Rodinia and Gondwana, emphasizing the importance of retreating subduction in supercontinent dispersal. Moreover, the Rodinia-related orogenic belts spatially overlap the Gondwana-related orogenic belts in the two blocks, indicating no significant relative rotation of India and Tarim during the evolution from Rodinia to Gondwana.Keywords:
Rodinia
Supercontinent
An interpretation of available paleomagnetic data from the Laurentia, Congo-Sao Francisco, Kalahari, and Amazonia cratons favors the hypothesis that these units were juxtaposed in a supercontinent by 1000 Ma. This supercontinent is similar to Hoffman's (1991) Rodinia, except for the Kalahari craton, whose 1300 to 1000 Ma Namaqua-Natal mobile belt is now juxtaposed against the correlated 1300 to 1000 Ma Grenville belt in eastern Laurentia, Our model suggests that a continuous 1300 to 1000 Ma orogenic belt, formed by the Grenville, Sunsas, Kibaride-Irumide-Lurio, Namaqua-Natal, and Dronning Maud Land-Coats Land belts, represents the suture zone between the Amazonia, Congo-Sao Francisco, Kalahari-Grunehogna, and Laurentia blocks. The formation of western Gondwana (from our Rodinia supercontinent) may be accomplished by the closure of the large Mozambique Ocean and the more restricted Adamastor Ocean, combined with some counterclockwise rotation of the Congo-Sao Francisco craton. Rotation of the Congo-Sao Francisco craton can explain the observed oblique convergence and wrench tectonics of Pan African-Brasiliano mobile belts that encircle this craton. The model is also consistent with the synchroneity between the Rodinia break-up and the assembly of Gondwana, as suggested by several authors (Laurentia began to separate from Rodinia at ∼625 Ma or later).
Rodinia
Supercontinent
Laurentia
Laurasia
Cite
Citations (36)
Rodinia
Supercontinent
Laurentia
Cite
Citations (39)
The Amazonian craton major accretionary and collisional processes may be correlated to supercontinent assemblies developed at several times in the Earth history. Based on geologic, structural and paleomagnetic evidence paleocontinent reconstructions have been proposed for Archean to younger times. The oldest continent (Ur) was formed probably by five Achaean cratonic areas (Kaapvaal, Western Dhawar, Bhandara, Singhhum and Pilbara cratons). Geologic evidences suggest the participation of the Archaean rocks of the Carajás region in the Ur landmass. Supercontinental 2.45 Ga Kenorland amalgamation is indicated by paleomagnetic data including Laurentia, Baltica, Australia, and Kalahari and Kaapvaal cratons. There is no evidence indicating that Amazonian craton was part of the Kenorland supercontinent. From 1.83 Ga to 1.25 Ga Columbia and Hudsonland supercontinents including Amazonian craton were proposed based on NE portion of the Amazonian craton (Maroni/Itacaiunas province) connection with West Africa and Kalahari cratons. Rodinia supercontinent reconstructions show Amazonia joined to Laurentia-Baltica as result of 1.1 Ga to 1.0 Ga fusion based on the Sunsas-Aguapei belts and Greenville and Sveconorwegian belts, respectivelly. The large Late Mesoproterozoic landmass included also Siberia, East Antartica, West Nile, Kalahari, Congo/Sao Francisco and Greenland. The 750 - 520 Ma Gondwana assembly includes most of the continental fragments rifted apart during the break-up of Rodinia followed by diachronic collisions (Araguaia, Paraguay and Tucavaca belts). The supercontinent Pangea is comprised of Gondwana and Laurentia formed at about 300 - 180 Ma ago. The Amazonian craton margins probably were not envolved in the collisional processes during Pangea because it was embebed in Neoproterozoic materials. As consequence, Amazonian craton borders have no record of the orogenic processes responsible for the Pangea amalgamation.
Supercontinent
Rodinia
Laurentia
Baltica
Laurasia
Cite
Citations (11)
Abstract Constraining the positions of, and interrelationships between, Earth's major continental blocks has played a major role in validating the concept of the supercontinent cycle. Minor continental fragments can provide additional key constraints on modes of supercontinent assembly and dispersal. The Tarim craton has been placed both at the core of Rodinia or on its periphery, and differentiating between the two scenarios has widespread implications for the breakup of Rodinia and subsequent assembly of Gondwana. In the South Tarim terrane, detrital zircon grains from Neoproterozoic–Silurian strata display two dominant populations at 950–750 and 550–450 Ma. Similarly, two main peaks at 1000–800 and 600–490 Ma characterize Neoproterozoic–Ordovician strata in northern India. Moreover, the two dominant peaks of South Tarim and north India lag two global peaks at 1200–1000 and 650–500 Ma, which reflect Rodinia and Gondwana assembly, arguing against a position within the heart of the two supercontinents. Ages and Hf isotopes of Tarim's detrital zircons argue for a position on the margin of both supercontinents adjacent to north India with periodic dispersal through opening and closing of small ocean basins (e.g., the Proto-Tethys). Alternating tectonic transitions between advancing and retreating subduction in North Tarim coincide with periodic drift of South Tarim from north India in Rodinia and Gondwana, emphasizing the importance of retreating subduction in supercontinent dispersal. Moreover, the Rodinia-related orogenic belts spatially overlap the Gondwana-related orogenic belts in the two blocks, indicating no significant relative rotation of India and Tarim during the evolution from Rodinia to Gondwana.
Rodinia
Supercontinent
Cite
Citations (23)
Rodinia
Supercontinent
Snowball Earth
Large igneous province
Thermochronology
Laurentia
Cite
Citations (20)
Hoffman (1991) elaborated a model proposing the Meso/Neo Proterozoic Rodinia supercontinent (Fig. 1), based on geological and (partly) on paleomagnetic grounds. He suggested that Baltica, Amazonia, Congo and Kalahari were the most probable units to border eastern and southern Laurentia, since they have similar Grenvillian orogenic belts (1.2-1.0 Ga). In his model, Hoffman (1991) suggests that the (present) northeastern Kalahari craton (including the Lurian belt) was flanked by East Antarctica, and that this craton belonged to the East Gondwana during the amalgamation of the Gondwana supercontinent in the Neoproterozoic.
Rodinia
Supercontinent
Laurentia
Baltica
Cite
Citations (0)
<p>Currently three supercontinent cycles have been identified and existed supercontinents named from youngest to oldest: Pangea, Rodinia and Nuna/Columbia. Recently Wang et al. (2020) suggested that supercontinent amalgamation were each preceded by ~200 Myr by the assembly of long-lasting <em>megacontinent</em> aking to Gondwana.</p><p>The Congo-S&#227;o Francisco (C/SF) craton is a main building block in Gondwana due to its central location, but its participation to Rodinia is controversial. Salminen et al. (2018) presented 1.11 Ga paleomagnetic and geochronological data from a prominent Epembe-Huila swarm of gabbronoritic dykes in the southern part of the Congo craton in Namibia and in Angola. This paleomagnetic pole yields a relatively low paleolatitude for the C/SF craton at ca. 1.11 Ga and permits a direct connection between Congo and Kalahari cratons. This connection supports an earlier qualitative comparison (Ernst et al., 2013), that the mafic Epembe-Huila swarm was an integral component of the Umkondo Large Igneous Province (LIP). The 1.11 Ga Umkondo LIP is widespread across Kalahari craton, and coeval mafic magmatism has been identified in several of the world&#8217;s other late Mesoproterozoic cratons: Laurentia, India, Amazonia, and Antarctica (Grunehogna). Were these coeval provinces spatially linked at the time of emplacement during the amalgamation of Rodinia? Robust paleomagnetic and geochronological data from Laurentia and Kalahari have demonstrated substantial separation between those two blocks at 1.11 Ga (Swanson-Hysell et al., 2015). However, based on similar tholeiitic magmatism Choudhary et al. (2019) proposed that Kalahari and C/SF together with Amazonia and northern India constituted &#8220;Umkondia&#8221; at 1.11 Ga. It has been proposed that Umkondia occupied an intermediary &#8220;megacontinental&#8221; role in the Nuna-Rodinia transition analogous to Gondwana in Rodinia-Pangea evolution (Wang et al., 2020). Contradicting Gondwana the proposed Umkondia was not long-lasting, since it has been proposed that Kalahari and Congo separated after 1.10 Ga to form a vast ocean (ca. 6000 km) during the formation of Rodinia and widespread juvenile intra-oceanic magmatism along the present-day central Brazil indicates a large ca. 0.94 Ga ocean between C/SF and Amazonia (Cordani et al., 2003).</p><p>&#160;</p><p>Choudhary et al. 2019. Precambrian Research 332, 105382.</p><p>Cordani et al. 2003. Gondwana Research 6, 275-283.</p><p>Ernst et al. 2003. Lithos 174 1-14.</p><p>Salminen et al. 2018. Geology 46, 1011-1014.</p><p>Swanson-Hysell et al. 2015. Geophysical Journal International 203, 2237-2247.</p><p>Wang et al. 2020. Geology 49, https://doi.org/10.1130/G47988.1</p><p>&#160;</p>
Rodinia
Supercontinent
Laurentia
Large igneous province
Cite
Citations (0)
The Mozambique Belt, which runs the length of eastern Africa, was thought to have formed during the collision of a fully assembled east Gondwana with west Gondwana during the East Africa Orogen (EAO). Subsequent work demonstrated that the elements of the Gondwana super‐continent were distributed along the margins of Laurentia in the antecedent super‐continent of Rodinia. It was quickly recognized that west Gondwana was an amalgam of cratonic elements assembled in the latter part of the Neoproterozoic during the Brasiliano and “Pan‐African” orogenic episodes (ca. 630–500 Ma). East Gondwana was traditionally depicted in Rodinia as a coherent landmass composed of Australia, the East Antarctic eraton, India, Madagascar, and Sri Lanka.
Supercontinent
Rodinia
Laurentia
Cite
Citations (18)
The North China Craton (NCC) was clearly different from the Yangtze and Tarim cratons during the late Mesoproterozoic to early Neoproterozoic period because no distinct geological records have been found about the thermotectonic events related to assembly and breakup of the Rodinia Supercontinent. Therefore, various assumptions occur regarding relation between the NCC and the Rodinia. In recent years, some typical Grenville ages were successively yielded using the detrital zircons from the Yushulaiz Group in Liaoning, Penglai and Tumen groups in Yantai of Shandong, all of them belonging to the Neoproterozoic clastic strata distributing on both sides of the Tanlu fault. The data are similar to those from the Upper Riphean at the southeastern margin of Siberia Craton. The ages of these zircons are not characteristic of the NCC and Siberian craton, indicating that there is a close relation between the eastern margin of the NCC, the southeastern margin of Siberian craton, and the Grenville Orogen. On the basis of the assumption, we propose a hypothesis (GOSEN joining hypothesis) that the Grenville Orogen, the southeastern margin of Siberia and eastern NCC was linked.
Rodinia
Supercontinent
Riphean
Cite
Citations (17)