logo
    Geochemistry, geochronology, and zircon Hf isotopes of Late Jurassic–Early Cretaceous granitoids in the Xing'an Massif, NE China: Implication for the Late Mesozoic tectonic evolution and crustal growth
    1
    Citation
    115
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract This paper presents new zircon U–Pb geochronological, Hf isotopic and whole‐rock geochemical data for the granitic plutons in the Xing'an Massif, Northeast China, to constrain the Late Mesozoic tectonic evolution of the Mongol‐Okhotsk Ocean and the Paleo‐Pacific Ocean. The zircon U–Pb ages indicate that the granitoids emplaced during the Late Jurassic–Early Cretaceous. The granodiorites show an adakitic affinity with high Sr/Y ratios and low Yb (< 1.30 μg/g) contents. The monzogranites exhibit high SiO 2 , low MgO contents, enrichment in LILEs (Rb, K, and Th), and depletion in HSFEs (Ta, Nb, Zr, P, and Ti). Petrological and geochemical features of these monzogranites suggest that they are highly fractionated I‐type granitoids. In addition, the zircon ε Hf (t) values and two‐stage model ages ( T DM2 ) are in the range of +2.6 to +8.1 and 669–1011 Ma, respectively, indicating that primary magma was generated by partial melting of juvenile lower‐crustal materials, and there was a significant crustal growth in the Phanerozoic in the Northeast China. Combined with the coeval granitoids widely exposed in the Xing'an Massif, we conclude that the Late Jurassic magma in Northeast China was generated in an extensional setting related to the closure of the Mongol‐Okhotsk Ocean, but the Early Cretaceous magma was related to the subduction of the Paleo‐Pacific Plate.
    Keywords:
    Massif
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Citations (11)
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology
    Abstract. Detrital zircon geochronology by laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) is a widely-used tool for determining maximum depositional ages, sediment provenance, and reconstructing sediment routing pathways. Although the accuracy and precision of U-Pb geochronology measurements has improved over the past two decades, Pb-loss continues to impact the ability to resolve zircon age populations by biasing affected zircon toward younger apparent ages. Chemical abrasion (CA) has been shown to reduce or eliminate the effects of Pb-loss in zircon U-Pb geochronology, but has yet to be widely applied to large-n detrital zircon analyses. Here, we assess the efficacy of the chemical abrasion treatment on zircon prior to analysis by LA-ICP-MS and discuss the advantages and limitations of this technique in relation to detrital zircon geochronology. We show that i) CA does not systematically bias LA-ICP-MS U-Pb dates for thirteen reference materials that span a wide variety of crystallization dates and U concentrations; ii) CA-LA-ICP-MS U-Pb zircon geochronology can reduce, or eliminate, Pb-loss in samples that have experienced significant radiation damage; and iii) bulk CA prior to detrital zircon U-Pb geochronology by LA-ICP-MS improves the resolution of Neoproterozoic to present zircon age populations and the percentage of concordant analyses in Mesoproterozoic and older age populations. The selective dissolution of zircon that has experienced high degrees of radiation damage suggests that some detrital zircon age populations could be destroyed or have their abundance significantly modified during this process. However, we did not identify this potential effect in either of the detrital zircon samples that were analyzed as part of this study. We conclude that pre-treatment of detrital zircon by bulk CA may be useful for applications that require increased resolution of detrital zircon populations.
    Geochronology