logo
    A Generic Method for Predicting Environmental Concentrations of Hydraulic Fracturing Chemicals in Soil and Shallow Groundwater
    14
    Citation
    43
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Source-pathway-receptor analyses involving solute migration pathways through soil and shallow groundwater are typically undertaken to assess how people and the environment could come into contact with chemicals associated with coal seam gas operations. For the potential short-term and long-term release of coal seam gas fluids from storage ponds, solute concentration and dilution factors have been calculated using a water flow and solute transport modelling framework for an unsaturated zone-shallow groundwater system. Uncertainty about dilution factors was quantified for a range of system parameters: (i) leakage rates from storage ponds combined with recharge rates, (ii) a broad combination of soil and groundwater properties, and (iii) a series of increasing travel distances through soil and groundwater. Calculated dilution factors in the soil increased from sand to loam soil and increased with an increasing recharge rate, while dilution decreased for a decreasing leak rate and leak duration. In groundwater, dilution factors increase with increasing aquifer hydraulic conductivity and riverbed conductance. For a hypothetical leak duration of three years, the combined soil and groundwater dilution factors are larger than 6980 for more than 99.97% of bores that are likely to be farther than 100 m from the source. Dilution factors were more sensitive to uncertainty in leak rates than recharge rates. Based on this dilution factor, a comparison of groundwater predicted environmental concentrations and predicted no-effect concentrations for a subset of hydraulic fracturing chemicals used in Australia revealed that for all but two of the evaluated chemicals the estimated groundwater concentration (for a hypothetical water bore at 100 m from the solute source) is smaller than the no-effect concentration for the protection of aquatic ecosystems.
    Keywords:
    Dilution
    Groundwater model
    Groundwater models serve the function of predicting and analyzing aquifer behavior. They require input information, such as hydrogeological parameters like hydraulic conductivity and storage coefficient, which are used to calibrate the model, and elementary actions that include recharge and extracted volumes. There are cases in which it is insufficient to know the homogeneous recharge entering through the surface basin, referred to as traditional recharge, since, in many instances, the distribution is altered by changes in land use. For this reason, based on the geomorphological characteristics of the basin, weighting is proposed for sites with greater recharge capacity. The present work shows a solution to the recharge distribution using the potential groundwater recharge (PGR) map, which is formed by weighting spatially distributed information: (i) drainage, (ii) precipitation, (iii) land use, (iv) geological faults, (v) soil type, (vi) slope, and (vii) hydrogeology. A comparison is made between groundwater modeling using traditional recharge and PGR recharge. It is noted that the modeling perform similarly for both recharges, and the errors do not exceed 5% absolute error, which validates the model’s reliability. This manuscript demonstrates how to model and calibrate groundwater in aquifers with scarce information and variable recharge, making it reproducible.
    Depression-focused recharge
    Groundwater model
    MODFLOW
    Citations (4)
    Most groundwater equations for flow toward wells use a set of assumptions and idealizations about the aquifer–well configuration so that analytical expressions can be derived for steady-state and unsteady-state flows. In this article, the main assumption in these equations is that constant hydraulic conductivity is relaxed and instead allows radial variability. The basic question is how the hydraulic conductivity gradient affects groundwater flow. Changes in hydraulic conductivity influence groundwater flow; any local changes in the hydraulic conductivity cause local changes in hydraulic gradient and in groundwater velocity. This problem is solved using water balance equations with changes in linear radial hydraulic conductivity. Simple but more general equations for groundwater flow toward wells are derived and applied to steady-state groundwater flows in a confined aquifer. This formulation reduces to the classical Theim solution for constant hydraulic conductivity. The use of this methodology is presented for steady-state groundwater measurement from a well in the Arabian Peninsula. It is observed that constant hydraulic conductivity underestimates transmissivity, compared to the numerical example given in this article, by about 41%.
    Groundwater flow equation
    Slug test
    Groundwater model
    Abstract Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.
    Depression-focused recharge
    Groundwater model
    Infiltration (HVAC)
    Groundwater discharge
    Citations (7)
    The study uses 78 groundwater head time series across 10 European countries with various geological and hydrological settings. The estimation of groundwater recharge using time series analysis and lumped modelling based on groundwater head time series is a low-cost and practical method. However, lumped recharge estimation models based on groundwater level variations are uncertain, and successful applications are known to depend on both climate and hydrogeological setting. Here, we assess the suitability of three different models to estimate recharge (Metran - Transfer Function-Noise model, AquiMod - groundwater level driven hydrological model, and GARDÉNIA - lumped catchment model). Results showed that while all three models generally did well during the modelling of groundwater heads, the resulting recharge estimations from the models were different. The analysis showed that the transfer-noise modelling of groundwater heads with recharge and evapotranspiration in Metran is not generally applicable for recharge estimation. The addition of physical information in AquiMod improved the recharge estimations, but the reliability was still limited without control of the water balance due to non-uniqueness. By adding discharge information to the modelling, GARDÉNIA can provide more reliable recharge values. Thus, recharge estimation from groundwater head time series without water balance information must be considered uncertain with low precision, but applicability can be improved when including knowledge of the local system.
    Groundwater model
    Depression-focused recharge
    Water balance