Evaluating recharge estimates based on groundwater head from different lumped models in Europe
Ida Karlsson SeidenfadenMajdi MansourHélène BessiereDavid Pulido‐VelazquezAnker Lajer HøjbergKatarina Atanasković SamolovLeticia Baena-RuízH BishopBarbara DessìKlaus HinsbyNatalya Hunter WilliamsOzren LarvaLucio MartarelliRichard MowbrayA.J. NielsenJohan ÖhmanTanja Petrović PantićAndrej StrojPeter van der KeurWillem Jan Zaadnoordijk
9
Citation
53
Reference
10
Related Paper
Citation Trend
Abstract:
The study uses 78 groundwater head time series across 10 European countries with various geological and hydrological settings. The estimation of groundwater recharge using time series analysis and lumped modelling based on groundwater head time series is a low-cost and practical method. However, lumped recharge estimation models based on groundwater level variations are uncertain, and successful applications are known to depend on both climate and hydrogeological setting. Here, we assess the suitability of three different models to estimate recharge (Metran - Transfer Function-Noise model, AquiMod - groundwater level driven hydrological model, and GARDÉNIA - lumped catchment model). Results showed that while all three models generally did well during the modelling of groundwater heads, the resulting recharge estimations from the models were different. The analysis showed that the transfer-noise modelling of groundwater heads with recharge and evapotranspiration in Metran is not generally applicable for recharge estimation. The addition of physical information in AquiMod improved the recharge estimations, but the reliability was still limited without control of the water balance due to non-uniqueness. By adding discharge information to the modelling, GARDÉNIA can provide more reliable recharge values. Thus, recharge estimation from groundwater head time series without water balance information must be considered uncertain with low precision, but applicability can be improved when including knowledge of the local system.Keywords:
Groundwater model
Depression-focused recharge
Water balance
Groundwater models serve the function of predicting and analyzing aquifer behavior. They require input information, such as hydrogeological parameters like hydraulic conductivity and storage coefficient, which are used to calibrate the model, and elementary actions that include recharge and extracted volumes. There are cases in which it is insufficient to know the homogeneous recharge entering through the surface basin, referred to as traditional recharge, since, in many instances, the distribution is altered by changes in land use. For this reason, based on the geomorphological characteristics of the basin, weighting is proposed for sites with greater recharge capacity. The present work shows a solution to the recharge distribution using the potential groundwater recharge (PGR) map, which is formed by weighting spatially distributed information: (i) drainage, (ii) precipitation, (iii) land use, (iv) geological faults, (v) soil type, (vi) slope, and (vii) hydrogeology. A comparison is made between groundwater modeling using traditional recharge and PGR recharge. It is noted that the modeling perform similarly for both recharges, and the errors do not exceed 5% absolute error, which validates the model’s reliability. This manuscript demonstrates how to model and calibrate groundwater in aquifers with scarce information and variable recharge, making it reproducible.
Depression-focused recharge
Groundwater model
MODFLOW
Cite
Citations (4)
Depression-focused recharge
Groundwater model
Groundwater discharge
Lysimeter
Cite
Citations (9)
Abstract Simulating groundwater flow in basin‐fill aquifers of the semiarid southwestern United States commonly requires decisions about how to distribute aquifer recharge. Precipitation can recharge basin‐fill aquifers by direct infiltration and transport through faults and fractures in the high‐elevation areas, by flowing overland through high‐elevation areas to infiltrate at basin‐fill margins along mountain fronts, by flowing overland to infiltrate along ephemeral channels that often traverse basins in the area, or by some combination of these processes. The importance of accurately simulating recharge distributions is a current topic of discussion among hydrologists and water managers in the region, but no comparative study has been performed to analyze the effects of different recharge distributions on groundwater simulations. This study investigates the importance of the distribution of aquifer recharge in simulating regional groundwater flow in basin‐fill aquifers by calibrating a groundwater‐flow model to four different recharge distributions, all with the same total amount of recharge. Similarities are seen in results from steady‐state models for optimized hydraulic conductivity values, fit of simulated to observed hydraulic heads, and composite scaled sensitivities of conductivity parameter zones. Transient simulations with hypothetical storage properties and pumping rates produce similar capture rates and storage change results, but differences are noted in the rate of drawdown at some well locations owing to the differences in optimized hydraulic conductivity. Depending on whether the purpose of the groundwater model is to simulate changes in groundwater levels or changes in storage and capture, the distribution of aquifer recharge may or may not be of primary importance.
Depression-focused recharge
Groundwater model
Infiltration (HVAC)
Groundwater discharge
Cite
Citations (7)