Southern African orography impacts on low clouds and the Atlantic ITCZ in a coupled model
10
Citation
26
Reference
10
Related Paper
Citation Trend
Abstract:
Abstract We examine the influence of southern African orography on the Namibian stratocumulus deck, the South Atlantic ocean‐to‐atmosphere energy transport, and the Intertropical Convergence Zone (ITCZ), using an atmosphere‐only model and a coupled atmosphere‐ocean model. For both models, a control simulation with realistic orography is compared to a simulation where the orography in southern Africa was removed. As in the previous studies, the removal of orography results in thinning of the Namibian stratocumulus deck. In the coupled model, the increased sea surface temperature in the southern Atlantic due to the reduction of low clouds forces the Atlantic ITCZ to shift southward toward the warmer hemisphere. However, changes in the ocean circulation cool the South Atlantic atmosphere, lessening the ITCZ shift and changing the structure of precipitation. These results show the importance of orography on shaping Atlantic rainfall and highlight the role of dynamical ocean processes in atmospheric dynamics.Keywords:
Orography
Intertropical Convergence Zone
Convergence zone
Atmospheric models
Abstract The impact of ocean–atmosphere interactions on summer rainfall over the South Atlantic Ocean is explored through the use of coupled ocean–atmosphere models. The Brazilian Center for Weather Forecast and Climate Studies (CPTEC) coupled ocean–atmosphere general circulation model (CGCM) and its atmospheric general circulation model (AGCM) are used to gauge the role of coupled modes of variability of the climate system over the South Atlantic at seasonal time scales. Twenty-six years of summer [December–February (DJF)] simulations were done with the CGCM in ensemble mode and the AGCM forced with both observed sea surface temperature (SST) and SST generated by the CGCM forecasts to investigate the dynamics/thermodynamics of the two major convergence zones in the tropical Atlantic: the intertropical convergence zone (ITCZ) and the South Atlantic convergence zone (SACZ). The results present both numerical model and observational evidence supporting the hypothesis that the ITCZ is a thermally direct, SST-driven atmospheric circulation, while the SACZ is a thermally indirect atmospheric circulation controlling SST variability underneath—a consequence of ocean–atmosphere interactions not captured by the atmospheric model forced by prescribed ocean temperatures. Six CGCM model results of the Ensemble-based Predictions of Climate Changes and their Impacts (ENSEMBLES) project, NCEP–NCAR reanalysis data, and oceanic and atmospheric data from buoys of the Prediction and Research Moored Array in the Tropical Atlantic (PIRATA) Project over the tropical Atlantic are used to validate CPTEC’s coupled and uncoupled model simulations.
Intertropical Convergence Zone
Tropical Atlantic
Atmospheric models
Atlantic Equatorial mode
Atmospheric Circulation
Convergence zone
Cite
Citations (39)
Intertropical Convergence Zone
Anomaly (physics)
Convergence zone
Cite
Citations (1)
The Intertropical Convergence Zone (ITCZ) in the tropical eastern Indian Ocean exhibits strong interannual variability, often co-occurring with positive Indian Ocean Dipole (pIOD) events. During what we identify as an extreme ITCZ event, a drastic northward shift of atmospheric convection coincides with an anomalously strong north-minus-south sea surface temperature (SST) gradient over the eastern equatorial Indian Ocean. Such shifts lead to severe droughts over the maritime continent and surrounding islands but also devastating floods in southern parts of the Indian subcontinent. Understanding future changes of the ITCZ is therefore of major scientific and socioeconomic interest. Here we find a more-than-doubling in the frequency of extreme ITCZ events under greenhouse warming, estimated from climate models participating in the Coupled Model Intercomparison Project phase 5 that are able to simulate such events. The increase is due to a mean state change with an enhanced north-minus-south SST gradient and a weakened Walker Circulation, facilitating smaller perturbations to shift the ITCZ northwards.
Intertropical Convergence Zone
Convergence zone
Walker circulation
Indian subcontinent
Tropical climate
Cite
Citations (28)
Abstract Global Climate Models (GCMs) exhibit substantial biases in their simulation of tropical climate. One particularly problematic bias exists in GCMs' simulation of the tropical rainband known as the Intertropical Convergence Zone (ITCZ). Much of the precipitation on Earth falls within the ITCZ, which plays a key role in setting Earth's temperature by affecting global energy transports, and partially dictates dynamics of the largest interannual mode of climate variability: The El Niño‐Southern Oscillation (ENSO). Most GCMs fail to simulate the mean state of the ITCZ correctly, often exhibiting a “double ITCZ bias,” with rainbands both north and south rather than just north of the equator. These tropical mean state biases limit confidence in climate models' simulation of projected future and paleoclimate states, and reduce the utility of these models for understanding present climate dynamics. Adjusting GCM parameterizations of cloud processes and atmospheric convection can reduce tropical biases, as can artificially correcting sea surface temperatures through modifications to air‐sea fluxes (i.e., “flux adjustment”). Here, we argue that a significant portion of these rainfall and circulation biases are rooted in orographic height being biased low due to assumptions made in fitting observed orography onto GCM grids. We demonstrate that making different, and physically defensible, assumptions that raise the orographic height significantly improves model simulation of climatological features such as the ITCZ and North American rainfall as well as the simulation of ENSO. These findings suggest a simple, physically based, and computationally inexpensive method that can improve climate models and projections of future climate.
Intertropical Convergence Zone
Orography
Orographic lift
Rainband
Convergence zone
Cite
Citations (31)
Abstract Earth's tropical and subtropical rainbands, such as Intertropical Convergence Zones (ITCZs) and monsoons, are complex systems, governed by both large‐scale constraints on the atmospheric general circulation and regional interactions with continents and orography, and coupled to the ocean. Monsoons have historically been considered as regional large‐scale sea breeze circulations, driven by land‐sea contrast. More recently, a perspective has emerged of a global monsoon, a global‐scale solstitial mode that dominates the annual variation of tropical and subtropical precipitation. This results from the seasonal variation of the global tropical atmospheric overturning and migration of the associated convergence zone. Regional subsystems are embedded in this global monsoon, localized by surface boundary conditions. Parallel with this, much theoretical progress has been made on the fundamental dynamics of the seasonal Hadley cells and convergence zones via the use of hierarchical modeling approaches, including aquaplanets. Here we review the theoretical progress made and explore the extent to which these advances can help synthesize theory with observations to better understand differing characteristics of regional monsoons and their responses to certain forcings. After summarizing the dynamical and energetic balances that distinguish an ITCZ from a monsoon, we show that this theoretical framework provides strong support for the migrating convergence zone picture and allows constraints on the circulation to be identified via the momentum and energy budgets. Limitations of current theories are discussed, including the need for a better understanding of the influence of zonal asymmetries and transients on the large‐scale tropical circulation.
Intertropical Convergence Zone
Convergence zone
Hadley cell
Orography
East Asian Monsoon
Atmospheric Circulation
Cite
Citations (116)
Intertropical Convergence Zone
Convergence zone
Cite
Citations (37)
The seasonal cycle over the tropical Pacific simulated by 11 coupled ocean–atmosphere general circulation models (GCMs) is examined. Each model consists of a high-resolution ocean GCM of either the tropical Pacific or near-global means coupled to a moderate- or high-resolution atmospheric GCM, without the use of flux correction. The seasonal behavior of sea surface temperature (SST) and eastern Pacific rainfall is presented for each model. The results show that current state-of-the-art coupled GCMs share important successes and troublesome systematic errors. All 11 models are able to simulate the mean zonal gradient in SST at the equator over the central Pacific. The simulated equatorial cold tongue generally tends to be too strong, too narrow, and extend too far west. SSTs are generally too warm in a broad region west of Peru and in a band near 10°S. This is accompanied in some models by a double intertropical convergence zone (ITCZ) straddling the equator over the eastern Pacific, and in others by an ITCZ that migrates across the equator with the seasons; neither behavior is realistic. There is considerable spread in the simulated seasonal cycles of equatorial SST in the eastern Pacific. Some simulations do capture the annual harmonic quite realistically, although the seasonal cold tongue tends to appear prematurely. Others overestimate the amplitude of the semiannual harmonic. Nonetheless, the results constitute a marked improvement over the simulations of only a few years ago when serious climate drift was still widespread and simulated zonal gradients of SST along the equator were often very weak.
Intertropical Convergence Zone
Walker circulation
Annual cycle
Atmospheric Circulation
Atmospheric models
Convergence zone
Cite
Citations (542)
As many coupled atmosphere-ocean general circulation models, the coupled Earth System Model developed at the Max Planck Institute for Meteorology suffers from severe sea-surface temperature (SST) biases in the tropical Atlantic. We performed a set of SST sensitivity experiments with its atmospheric model component ECHAM6 to understand the impact of tropical Atlantic SST biases on atmospheric circulation and precipitation. The model was forced by a climatology of observed global SSTs to focus on simulated seasonal and annual mean state climate. Through the superposition of varying tropical Atlantic bias patterns extracted from the MPI-ESM on top of the control field, this study investigates the relevance of the seasonal variation and spatial structure of tropical Atlantic biases for the simulated response. Results show that the position and structure of the Intertropical Convergence Zone (ITCZ) across the Atlantic is significantly affected, exhibiting a dynamically forced shift of annual mean precipitation maximum to the east of the Atlantic basin as well as a southward shift of the oceanic rain belt. The SST-induced changes in the ITCZ in turn affect seasonal rainfall over adjacent continents. However not only the ITCZ position but also other effects arising from biases in tropical Atlantic SSTs, e.g. variations in the wind field, change the simulation of precipitation over land. The seasonal variation and spatial pattern of tropical Atlantic SST biases turns out to be crucial for the simulated atmospheric response and is essential for analyzing the contribution of SST biases to coupled model mean state biases. Our experiments show that MPI-ESM mean-state biases in the Atlantic sector are mainly driven by SST biases in the tropical Atlantic while teleconnections from other basins seem to play a minor role.
Intertropical Convergence Zone
Tropical Atlantic
Atlantic Equatorial mode
Atmospheric Circulation
Walker circulation
Atmospheric models
Convergence zone
Cite
Citations (23)
Abstract This study examines the double–intertropical convergence zone (ITCZ) problem in the coupled general circulation models (CGCMs) participating in the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4). The twentieth-century climate simulations of 22 IPCC AR4 CGCMs are analyzed, together with the available Atmospheric Model Intercomparison Project (AMIP) runs from 12 of them. To understand the physical mechanisms for the double-ITCZ problem, the main ocean–atmosphere feedbacks, including the zonal sea surface temperature (SST) gradient–trade wind feedback (or Bjerknes feedback), the SST–surface latent heat flux (LHF) feedback, and the SST–surface shortwave flux (SWF) feedback, are studied in detail. The results show that most of the current state-of-the-art CGCMs have some degree of the double-ITCZ problem, which is characterized by excessive precipitation over much of the Tropics (e.g., Northern Hemisphere ITCZ, South Pacific convergence zone, Maritime Continent, and equatorial Indian Ocean), and are often associated with insufficient precipitation over the equatorial Pacific. The excessive precipitation over much of the Tropics usually causes overly strong trade winds, excessive LHF, and insufficient SWF, leading to significant cold SST bias in much of the tropical oceans. Most of the models also simulate insufficient latitudinal asymmetry in precipitation and SST over the eastern Pacific and Atlantic Oceans. The AMIP runs also produce excessive precipitation over much of the Tropics, including the equatorial Pacific, which also leads to overly strong trade winds, excessive LHF, and insufficient SWF. This suggests that the excessive tropical precipitation is an intrinsic error of the atmospheric models, and that the insufficient equatorial Pacific precipitation in the coupled runs of many models comes from ocean–atmosphere feedback. Feedback analysis demonstrates that the insufficient equatorial Pacific precipitation in different models is associated with one or more of the following three biases in ocean–atmosphere feedback over the equatorial Pacific: 1) excessive Bjerknes feedback, which is caused by excessive sensitivity of precipitation to SST and overly strong time-mean surface wind speed; 2) overly positive SST–LHF feedback, which is caused by excessive sensitivity of surface air humidity to SST; and 3) insufficient SST–SWF feedback, which is caused by insufficient sensitivity of cloud amount to precipitation. Off the equator over the eastern Pacific stratus region, most of the models produce insufficient stratus–SST feedback associated with insufficient sensitivity of stratus cloud amount to SST, which may contribute to the insufficient latitudinal asymmetry of SST in their coupled runs. These results suggest that the double-ITCZ problem in CGCMs may be alleviated by reducing the excessive tropical precipitation and the above feedback-relevant errors in the atmospheric models.
Intertropical Convergence Zone
Convergence zone
Atmospheric models
Cite
Citations (575)