Frequency-dependent traveltime tomography for near-surface seismic refraction data
31
Citation
52
Reference
10
Related Paper
Citation Trend
Abstract:
Traveltime tomography is the main method by which the Earth's seismic velocity is determined on all scales, from the near-surface (<100 m) to the core. Usually traveltime tomography uses ray theory, an infinite-frequency approximation of wave propagation. A theory developed in global seismology to account for the finite-frequency nature of seismic data, known as finite-frequency traveltime tomography (FFTT), can theoretically provide a more accurate estimation of velocity. But the FFTT theory is generally not applicable to near-surface data because there is no reference velocity model known in advance that is capable of yielding synthetic waveforms that are close enough to the recorded seismograms to yield a reliable delay time. Also, there is usually no reference model for which the unknown velocity model represents a small (linear) perturbation from the reference model. This paper presents a frequency dependent form of non-linear traveltime tomography specifically designed for near-surface seismic data in which a starting model, iterative approach with recalculated travel paths at each iteration, and the calculation of a frequency-dependent total traveltime, as opposed to a delay time, are used. Frequency-dependent traveltime tomography (FDTT) involves two modifications to conventional traveltime tomography: (1) the calculation of frequency-dependent traveltimes using wavelength-dependent velocity smoothing (WDVS) and (2) the corresponding sensitivity kernels that arise from using WDVS. Results show that the former modification is essential to achieve significant benefits from FDTT, whereas the latter is optional in that similar results can be achieved using infinite-frequency kernels. The long seismic wavelengths relative to the total path lengths and the size of subsurface heterogeneities of typical near-surface data means the improvements over ray theory tomography are significant. The benefits of FDTT are demonstrated using conventional minimum-structure regularization techniques to address the issue of model non-uniqueness. For synthetic data, the estimated FDTT models are shown to be more accurate than the corresponding infinite-frequency-derived models. Both 2-D and 3-D applications of FDTT to real data from a near-surface study yield estimated models that contain more structure than the corresponding infinite-frequency-derived models. Applications of FDTT without regularization demonstrate the potential of the WDVS-derived sensitivity kernels to provide a natural smoothing of the velocity model and thereby allow the data alone to determine the final model structure.Keywords:
Seismic Tomography
Seismogram
Smoothing
Synthetic data
Later earthquake-sourced PmP phases have the potential to significantly improve ray coverage and resolution of crustal tomography methods,as their trajectories are quite different from those of shallower P phases.This paper analyzes the characteristics of later PmP arrival times from earthquakes with different focal depths.The results show that PmP arrival time differences from earthquakes at a range of focal depths are gradually lowered with increasing offset.We found that where the first recorded P-wave phase was the intra-crustal refraction phase(Pg),the differences in arrival time between Pg and PmP phases decreased with increasing focal depth at an offset of less than 120 km.Where the first P-wave phase is the upper mantle refraction phase(Pn),the difference in arrival times between Pn and PmP phases became larger with an increase in focal depth at an offset of more than 150 km.A total of 394 PmP phases and 3356 first P phases were picked from seismograms in the active volcanic area of northeastern Japan,according to the characteristics of calculated arrival times,amplitudes and particle motions.These were used to investigate the role of PmP phases in crustal tomography beneath an active volcanic region.Results of the detailed resolution analysis show that the addition of PmP data can improve significantly the resolution of the lower crustal structure in tomographic images.After the PmP data were included in the tomographic inversion,the path of upwelling magma,along which a series of low-frequency microearthquakes is clearly distributed,was better imaged.These results suggest that the PmP phase has an important role in detailed crustal tomography.
Seismogram
Seismic Tomography
Arrival time
Focal mechanism
Cite
Citations (0)
A pair of papers in 1976 lead-authored by Kei Aki heralded the beginning of the field of seismic tomography of the lithosphere. The 1976 paper by Aki, Christoffersson, and Husebye introduced a simple and approximate yet elegant technique for using body-wave arrival times from teleseismic earthquakes to infer the three-dimensional (3-D) seismic velocity heterogeneities beneath a seismic array or network (teleseismic tomography). Similarly, a 1976 paper by Aki and Lee presented a method for inferring 3-D structure beneath a seismic network using body-wave arrival times from local earthquakes (local earthquake tomography). Following these landmark papers, many dozens of papers and numerous books have been published presenting exciting applications of and/or innovative improvements to the methods of teleseismic and local earthquake tomography, many by Aki's students.This paper presents a brief review of these two types of tomography methods, discussing some of the underlying assumptions and limitations. Thereafter some of the significant methodological developments are traced over the past two and a half decades, and some of the applications of tomography that have reaped the benefits of these developments are highlighted. One focus is on the steady improvement in structural resolution and inference power brought about by the increased number and quality of seismic stations, and in particular the value of utilizing shear waves. The paper concludes by discussing exciting new scientific projects in which seismic tomography will play a major role — the San Andreas Fault Observatory at Depth (SAFOD) and USArray, the initial components of Earthscope.
Seismic Tomography
Geophysical Imaging
Cite
Citations (12)
Knowledge of seismic velocities in the seismogenic part of subduction zones can reveal how material properties may influence large ruptures. Observations of aftershocks that followed the 2010 Mw 8.8 Maule, Chile earthquake provide an exceptional dataset to examine the physical properties of a megathrust rupture zone. We manually analysed aftershocks from onshore seismic stations and ocean bottom seismometers to derive a 3-D velocity model of the rupture zone using local earthquake tomography. From the trench to the magmatic arc, our velocity model illuminates the main features within the subduction zone. We interpret an east-dipping high P-wave velocity anomaly (>6.9 km/s) as the subducting oceanic crust and a low P-wave velocity (<6.25 km/s) in the marine forearc as the accretionary complex. We find two large P-wave velocity anomalies (∼7.8 km/s) beneath the coastline. These velocities indicate an ultramafic composition, possibly related to extension and a mantle upwelling during the Triassic. We assess the role played by physical heterogeneity in governing megathrust behaviour. Greatest slip during the Maule earthquake occurred in areas of moderate P-wave velocity (6.5–7.5 km/s), where the interface is structurally more uniform. At shallow depths, high fluid pressure likely influenced the up-dip limit of seismic activity. The high velocity bodies lie above portions of the plate interface where there was reduced coseismic slip and minimal postseismic activity. The northern velocity anomaly may have acted as a structural discontinuity within the forearc, influencing the pronounced crustal seismicity in the Pichilemu region. Our work provides evidence for how the ancient geological structure of the forearc may influence the seismic behaviour of subduction megathrusts.
Forearc
Seismic Tomography
Cite
Citations (59)
Convergent boundary
Seismic Tomography
Pacific Plate
Seismic array
Seamount
Low-velocity zone
Underplating
Receiver function
Cite
Citations (173)
Seismic Tomography
Geophysical Imaging
Cite
Citations (19)
Well documented short period seismic observations from the nuclear explosion Longshot provide an unusual opportunity to study seismic wave propagation in the mantle beneath an island arc. Ray calculations for a model containing a descending lithospheric slab predict an extensive P-wave shadow zone covering much of Canada and Europe and this is in close agreement with the pattern of reported magnitudes. Other features of the short period waveform which occur on some seismograms also seem amenable to explanation in terms of the complications that a slab introduces into seismic wave propagation in the vicinity of an island arc. Many examples are cited, including instances where a slab beneath the observing station also modifies the waveform.
Seismogram
Slab
Shadow zone
Seismic Tomography
Cite
Citations (64)
We utilize a scattering‐based seismic tomography technique to constrain crustal structure around the southern San Francisco Bay region (SFBR). This technique is based on coupled traveling wave scattering theory, which has usually been applied to the interpretation of surface waves in large regional‐scale studies. Using fully three‐dimensional kernels, this technique is here applied to observed P , S , and surface waves of intermediate period (3–4 s dominant period) observed following eight selected regional events. We use a total of 73 seismograms recorded by a U.S. Geological Survey short‐period seismic array in the western Santa Clara Valley, the Berkeley Digital Seismic Network, and the Northern California Seismic Network. Modifications of observed waveforms due to scattering from crustal structure include (positive or negative) amplification, delay, and generation of coda waves. The derived crustal structure explains many of the observed signals which cannot be explained with a simple layered structure. There is sufficient sensitivity to both deep and shallow crustal structure that even with the few sources employed in the present study, we obtain shallow velocity structure which is reasonably consistent with previous P wave tomography results. We find a depth‐dependent lateral velocity contrast across the San Andreas fault (SAF), with higher velocities southwest of the SAF in the shallow crust and higher velocities northeast of the SAF in the midcrust. The method does not have the resolution to identify very slow sediment velocities in the upper approximately 3 km since the tomographic models are smooth at a vertical scale of about 5 km.
Seismogram
Coda
Seismic Tomography
Earth structure
Cite
Citations (7)
Traveltime tomography is the main method by which the Earth's seismic velocity is determined on all scales, from the near-surface (<100 m) to the core. Usually traveltime tomography uses ray theory, an infinite-frequency approximation of wave propagation. A theory developed in global seismology to account for the finite-frequency nature of seismic data, known as finite-frequency traveltime tomography (FFTT), can theoretically provide a more accurate estimation of velocity. But the FFTT theory is generally not applicable to near-surface data because there is no reference velocity model known in advance that is capable of yielding synthetic waveforms that are close enough to the recorded seismograms to yield a reliable delay time. Also, there is usually no reference model for which the unknown velocity model represents a small (linear) perturbation from the reference model. This paper presents a frequency dependent form of non-linear traveltime tomography specifically designed for near-surface seismic data in which a starting model, iterative approach with recalculated travel paths at each iteration, and the calculation of a frequency-dependent total traveltime, as opposed to a delay time, are used. Frequency-dependent traveltime tomography (FDTT) involves two modifications to conventional traveltime tomography: (1) the calculation of frequency-dependent traveltimes using wavelength-dependent velocity smoothing (WDVS) and (2) the corresponding sensitivity kernels that arise from using WDVS. Results show that the former modification is essential to achieve significant benefits from FDTT, whereas the latter is optional in that similar results can be achieved using infinite-frequency kernels. The long seismic wavelengths relative to the total path lengths and the size of subsurface heterogeneities of typical near-surface data means the improvements over ray theory tomography are significant. The benefits of FDTT are demonstrated using conventional minimum-structure regularization techniques to address the issue of model non-uniqueness. For synthetic data, the estimated FDTT models are shown to be more accurate than the corresponding infinite-frequency-derived models. Both 2-D and 3-D applications of FDTT to real data from a near-surface study yield estimated models that contain more structure than the corresponding infinite-frequency-derived models. Applications of FDTT without regularization demonstrate the potential of the WDVS-derived sensitivity kernels to provide a natural smoothing of the velocity model and thereby allow the data alone to determine the final model structure.
Seismic Tomography
Seismogram
Smoothing
Synthetic data
Cite
Citations (31)
Seismic tomography is a powerful tool for mapping the three-dimensional structure of the Earth's interior. Tomographic images obtained in the past four decades have greatly improved our understanding of the Earth's heterogeneous structure and dynamics, which signify a revolution in Earth sciences. Most of the tomographic models are determined using the first P and S wave data generated by local earthquakes and/or teleseismic events. Five global seismic discontinuities exist in the Earth, including the Moho, the 410 km and 660 km discontinuities, the core-mantle boundary, and the inner-core boundary. In addition, local-scale seismic discontinuities are also revealed, particularly in subduction zones. These sharp discontinuities generate abundant reflected and converted seismic waves, the so-called later phases, which are identified in observed seismograms. In this article, I review the tomographic studies in the past three decades that made use of the later phase data. Because later phases have ray paths different from those of the first P and S waves, they illuminate the Earth's interior structure that is not well sampled by the first waves. Hence, the use of later phases in tomographic imaging has led to new discoveries of anomalous structures and geodynamic processes at different spatial scales, which shed new light on seismotectonics, magmatism and mantle dynamics. These practices indicate that the later phases are very important in seismic tomography, and so they should be collected from seismograms with a greater quantity and quality so as to obtain better tomographic images of the Earth's interior.
Seismic Tomography
Classification of discontinuities
Seismogram
Core–mantle boundary
Seismotectonics
Earth structure
Tomographic reconstruction
Cite
Citations (17)