Pacific trench motions controlled by the asymmetric plate configuration
10
Citation
43
Reference
10
Related Paper
Citation Trend
Abstract:
We present a novel explanation for absolute trench‐normal motions of slabs surrounding the Pacific. Rapid subduction‐zone retreat on the eastern side of the Pacific and slow advance in the west can result from the large‐scale asymmetric plate configuration. We use simple fluid dynamics to explain the mechanical background of this hypothesis, and we use the results of a simple finite difference scheme to estimate the effect on trench motion velocities. The hypothesis is based on two key assumptions. First, we follow the concept of plate‐scale horizontal counterflow in the asthenosphere driven by accretion of asthenosphere into lithosphere and by plate motion. Second, we assume that horizontally wide slabs without large slab windows drift passively in the mantle flow field and do not retreat as a result of flow around the slab. If the asthenosphere transfers flow‐related horizontal shear stress into deeper levels of the mantle, an asymmetry in the plate configuration leads to different net pressure forces on the two slabs and thus affects the retreat behavior. In an ocean with an asymmetric ridge position, the slab of the smaller plate should retreat faster than the slab of the large plate, which may even advance. Also, the domain of a slower moving plate should collapse faster than the domain of the faster plate. Our model explains the counterintuitive negative correlation between slab age and retreat velocity observed in the Pacific. It also accords with the topographic asymmetry of the ridge flanks along the Pacific rise.Keywords:
Asthenosphere
Slab
Slab window
Pacific Plate
Ridge push
We present a novel explanation for absolute trench‐normal motions of slabs surrounding the Pacific. Rapid subduction‐zone retreat on the eastern side of the Pacific and slow advance in the west can result from the large‐scale asymmetric plate configuration. We use simple fluid dynamics to explain the mechanical background of this hypothesis, and we use the results of a simple finite difference scheme to estimate the effect on trench motion velocities. The hypothesis is based on two key assumptions. First, we follow the concept of plate‐scale horizontal counterflow in the asthenosphere driven by accretion of asthenosphere into lithosphere and by plate motion. Second, we assume that horizontally wide slabs without large slab windows drift passively in the mantle flow field and do not retreat as a result of flow around the slab. If the asthenosphere transfers flow‐related horizontal shear stress into deeper levels of the mantle, an asymmetry in the plate configuration leads to different net pressure forces on the two slabs and thus affects the retreat behavior. In an ocean with an asymmetric ridge position, the slab of the smaller plate should retreat faster than the slab of the large plate, which may even advance. Also, the domain of a slower moving plate should collapse faster than the domain of the faster plate. Our model explains the counterintuitive negative correlation between slab age and retreat velocity observed in the Pacific. It also accords with the topographic asymmetry of the ridge flanks along the Pacific rise.
Asthenosphere
Slab
Slab window
Pacific Plate
Ridge push
Cite
Citations (10)
Volcanism on Earth is known to occur in three tectonic settings: divergent plate boundaries (such as mid-ocean ridges), convergent plate boundaries (such as island arcs), and hot spots. We report volcanism on the 135 million-year-old Pacific Plate not belonging to any of these categories. Small alkalic volcanoes form from small percent melts and originate in the asthenosphere, as implied by their trace element geochemistry and noble gas isotopic compositions. We propose that these small volcanoes erupt along lithospheric fractures in response to plate flexure during subduction. Minor extents of asthenospheric melting and the volcanoes' tectonic alignment and age progression in the direction opposite to that of plate motion provide evidence for the presence of a small percent melt in the asthenosphere.
Asthenosphere
Convergent boundary
Pacific Plate
Lithospheric flexure
Cite
Citations (297)
The plate tectonic theory reveals the seafloor spreading and plate lateral movement, and illustrates magmatism related to plate boundaries. However, a great number of studies indicate that plate movement is tightly coupled with asthenosphere, instead of sliding on asthenosphere. Globally, an asymmetrical system of spreading and subduction is not expected from the plate tectonic theory, since evidences are rather scarce from geophysics and geochemistry for the Andes arc to be taken as a paradigm for ocean-continent subduction. Problems also arise from geologic phenomena that are associated with subduction zones including back arc opening, continental growth, recycling of crustal materials and metallogenesis. Magma activation involved in large igneous provinces surpasses the network established by the plate tectonic theory, and occurs during the entire earth history and in more extensive areas than those covered by plate tectonic theory. The academic opinions related to large igneous provinces propose a set of mechanisms to explain continental growth, recycling of crustal materials and metallogenesis, and these mechanisms are entirely different from those of the plate tectonic theory. The hypothesis of mantle plume driven by deep mantle convection holds lateral movement of lithosphere in coupling relationship with its underlying asthenosphere, and this is in agreement with the opinion of long term coupling between lithosphere and asthenosphere as was revealed by Pb isotope study.
Asthenosphere
Seafloor Spreading
geodynamics
Convergent boundary
Mantle plume
Cite
Citations (0)
Current interpretations of Cretaceous tectonic evolution of the northwest Pacific trace interactions between the Pacific plate and three other plates, the Farallon, Izanagi, and Kula plates. The Farallon plate moved generally eastward relative to the Pacific plate. The Izanagi and Kula plates moved generally northward relative to the Pacific plate, with Izanagi the name given to the northward-moving plate prior to the Cretaceous normal polarity superchron and the name Kula applied to the postsuperchron plate. In this article I suggest that these names apply to the same plate and that there was only one plate moving northward throughout the Cretaceous. I suggest that the tectonic reorganization that has previously been interpreted as formation of a new plate, the Kula plate, at the end of the superchron was actually a plate boundary reorganization that involved a 2000 km jump of the Pacific–Farallon–Kula/Izanagi triple junction. Because this jump occurred during a time of no magnetic reversals, it is not possible to map or date it precisely, but evidence suggests mid-Cretaceous timing. The Emperor Trough formed as a transform fault linking the locations of the triple junction before and after the jump. The triple junction jump can be compared with an earlier jump of the triple junction of 800 km that has been accurately mapped because it occurred during the Late Jurassic formation of the Mesozoic-sequence magnetic lineations. The northwest Pacific also contains several volcanic features, such as Hawaii, that display every characteristic of a hotspot, although whether deep mantle plumes are a necessary component of hotspot volcanism is debatable. Hawaiian volcanism today is apparently independent of plate tectonics, i.e., Hawaii is a center of anomalous volcanism not tied to any plate boundary processes. The oldest seamounts preserved in the Hawaii-Emperor chain are located on Obruchev Rise at the north end of the Emperor chain, close to the junction of the Aleutian and Kamchatka trenches. These seamounts formed in the mid-Cretaceous close to the spreading ridge abandoned by the 2000 km triple junction jump. Assuming that Obruchev Rise is the oldest volcanic edifice of the Hawaiian hotspot and thus the site of its initiation, the spatial and temporal coincidence between these events suggests that the Hawaii hotspot initiated at the spreading ridge that was abandoned by the 2000 km jump of the triple junction. This implies a tectonic origin for the hotspot. Other volcanic features in the northwest Pacific also appear to have tectonic origins. Shatsky Rise is known to have formed on the migrating Pacific-Farallon-Izanagi triple junction during the Late Jurassic–Early Cretaceous, not necessarily involving a plume-derived hotspot. Models for the formation of Hess Rise have included hotspot track and anomalous spreading ridge volcanism. The latter model is favored in this article, with Hess Rise forming on a ridge axis possibly abandoned as a result of a ridge jump during the superchron. Thus, although a hotspot like Hawaii could be associated with a deep mantle plume today, it would appear that it and other northwest Pacific volcanic features originally formed as consequences of shallow plate tectonic processes.
Triple junction
Pacific Plate
Hotspot (geology)
North American Plate
Slab window
Cite
Citations (36)
Pacific Plate
Convergent boundary
Ridge push
Slab window
Transform fault
Cite
Citations (22)
The buoyancy of lithospheric slabs in subduction zones is widely thought to dominate the torques driving plate tectonics. In late Cretaceous and early Paleogene times, the Indian plate moved more rapidly over the mantle than freely subducting slabs sink within it. This signal event has been attributed to arrival of the Deccan–Réunion mantle plume beneath the plate, but it is unknown in which proportions the plume acted to alter the balance of existing plate driving torques and to introduce torques of its own. Our plate kinematic analysis of the Mascarene Basin yields a detailed Indian plate motion history for the period 89–60 Ma. Plate speed initially increases steadily until a pronounced acceleration in the period 68–64 Ma, after which it abruptly returns to values much like those beforehand. This pattern is unlike that suggested to result from the direct introduction of driving forces by the arrival of a thermal plume at the base of the plate. A simple analysis of the gravitational force related to the Indian plate's thickening away from its boundary with the African plate suggests instead that the sudden acceleration and deceleration may be related to uplift of part of that boundary during a period when it was located over the plume head. In this instance, torques related to plate accretion and subduction may have contributed in similar proportions to drive plate motion.
Hotspot (geology)
African Plate
Mantle plume
Slab window
Convergent boundary
Pacific Plate
Ridge push
Cite
Citations (54)
<p>The seismicity, structure and tectonics of the North Island plate boundary have been studied by means of a microearthquake traverse oriented in the direction of dip of the subducted Pacific plate and stretching from southern Hawke's Bay to northern Taranaki. The geometry of the top of the Pacific plate is inferred from a band of concentrated microearthquake activity which can be identified with the crust of the plate. The Pacific plate appears to have two knee-like bends, one between the east coast and the Ruahine Range, where the top of the plate is about 25 km deep, the other below the volcanic front, where it is about 70 km deep. The shallower bend and subsequent restraightening of the plate can be related to phase changes in the plate, while the deeper bend can be related to volcanism. Composite focal mechanisms indicate that seaward of its shallower bend the Pacific plate is being loaded by the Indian plate, whereas landward of this bend the Pacific plate is sinking under its own weight. Both composite focal mechanisms and the distribution of microseismicity in the Pacific plate suggest the existence of a major discontinuity striking down the dip of the plate and passing beneath the Tongariro volcanic centre. A conspicuous lack of microseismicity in the Indian plate in the eastern North Island revealed in this study can be related to the plates being unlocked in this region. A feature of the seismicity of the Indian plate in the region of the Wanganui Basin is the concentration of activity in the 25-42 km depth range, shallower activity being largely confined to the northeast edge of the basin, near Mt Ruapehu and Waiouru. Composite focal mechanisms suggest the 25-42 km deep activity reflects stresses set up by locking and unlocking of the plates, while the shallower activity reflects local stresses related to volcanic phenomena.</p>
Pacific Plate
Microearthquake
Eurasian Plate
Convergent boundary
North American Plate
Composite plate
Cite
Citations (6)
Pacific Plate
Hotspot (geology)
Slab window
Mantle plume
Convergent boundary
Seamount
Cite
Citations (38)
Slab
Asthenosphere
Slab window
Tectonophysics
Cite
Citations (28)
The seismicity, structure and tectonics of the Indian/Pacific plate boundary in the North Island of New Zealand have been studied by means of a microearthquake traverse oriented in the direction of dip of the subducted Pacific plate and extending for about 210 km. The geometry of the top of the Pacific plate is inferred from a band of concentrated microearthquake activity approximately 10 km thick which is identified with the crust of the plate. The Pacific plate has two knee-like bends, one where the top of the plate is about 25 km deep, the other below the volcanic front, where the plate is about 70 km deep. The shallower bend and subsequent restraightening of the plate are related to phase changes in the plate, the deeper bend to volcanism. Composite focal mechanisms indicate that seaward of the shallower bend the Pacific plate is being loaded by the Indian plate, whereas landward of this bend the Pacific plate is sinking under its own weight.
Pacific Plate
Microearthquake
Convergent boundary
Eurasian Plate
North American Plate
Slab window
Composite plate
Cite
Citations (112)