logo
    Role ofBacteria,ArchaeaandFungiinvolved in Methane Release in Abandoned Coal Mines
    59
    Citation
    47
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Worldwide, abandoned coal mines release substantial amounts of methane, which is largely of biogenic origin. The aim of this study was to understand the microbial processes involved in mine-gas formation. Therefore, coal and timber samples and anaerobic enrichments from two abandoned coal mines in Germany were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, Fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). A broad spectrum of facultative anaerobic bacteria and acetogens belonging to all five groups (α-ϵ) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi were detected. Archaea were represented by acetoclastic Methanosarcinales and Crenarchaeota with an unknown metabolism. Fungi formed thick biofilms particularly on timber, and were identified as typical wood degraders belonging to the Ascomycetes and Basidiomycetes. The community analysis as well as the environmental conditions and the metabolites detected in a previous study are consistent with the following scenario of methane release: Weathering of coal and timber is initiated by wood-degrading Fungi and Bacteria under a suboxic atmosphere. In the lower, oxygen-depleted layers Fungi and Bacteria perform incomplete oxidation and release reduced substrates which can be channeled into methanogenesis. Acetate appeared to be the main precursor of the biogenic methane in the investigated coal mines.
    Keywords:
    Chloroflexi (class)
    Crenarchaeota
    Euryarchaeota
    Acetogenesis
    Facultative
    Worldwide, abandoned coal mines release substantial amounts of methane, which is largely of biogenic origin. The aim of this study was to understand the microbial processes involved in mine-gas formation. Therefore, coal and timber samples and anaerobic enrichments from two abandoned coal mines in Germany were subjected to DGGE analyses and quantitative PCR. The primers used were specific for Bacteria, Archaea, Fungi, and the key functional genes for sulfate reduction (dsrA) and methanogenesis (mcrA). A broad spectrum of facultative anaerobic bacteria and acetogens belonging to all five groups (α-ϵ) of the Proteobacteria, as well as the Bacteroidetes, Tenericutes, Actinobacteria, Chlorobi and Chloroflexi were detected. Archaea were represented by acetoclastic Methanosarcinales and Crenarchaeota with an unknown metabolism. Fungi formed thick biofilms particularly on timber, and were identified as typical wood degraders belonging to the Ascomycetes and Basidiomycetes. The community analysis as well as the environmental conditions and the metabolites detected in a previous study are consistent with the following scenario of methane release: Weathering of coal and timber is initiated by wood-degrading Fungi and Bacteria under a suboxic atmosphere. In the lower, oxygen-depleted layers Fungi and Bacteria perform incomplete oxidation and release reduced substrates which can be channeled into methanogenesis. Acetate appeared to be the main precursor of the biogenic methane in the investigated coal mines.
    Chloroflexi (class)
    Crenarchaeota
    Euryarchaeota
    Acetogenesis
    Facultative