logo
    Metamorphic evolution of a very low- to low-grade metamorphic core complex (Danubian window) in the South Carpathians
    22
    Citation
    78
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract The Danubian window, characterized by diagenetic to low greenschist facies conditions at a high thermal gradient, is evidently of great interest for methodological studies, because high metamorphic thermal gradient conditions during low grade metamorphism have received little attention so far. The general increase in metamorphic grade from SW to NE in the Danubian window is indicated by mineral Parageneses studies, as well as by illite Kübler index (KI) measurements and organic matter reflectance (OMR). For the first time, this study distinguishes between metamorphic conditions related to Jurassic ocean floor, Cretaceous nappe stacking, post-collisional accommodation and syn-kinematic Getic detachment metamorphism and cooling after Oligocene exhumation. The occurrence of the prehnite–pumpellyite facies in the Severin–Cosustea units in the southeastern area is the result of Cretaceous metamorphism. Remnants of ocean floor metamorphism prevailed. The highest pressure is constrained by the upper stability limit of prehnite to be at around 4.0 kbar. The Danubian units situated within the diagenetic zone were not below 200 °C, due to epidote formation. The KI, OMR and mineral data, indicate diagenetic conditions. Assuming temperatures between >200 and <250 °C, pressures between 1.8 and 2.6 kbar were calculated using kinetic and numerical maturity models. Orogenic collisional Cretaceous peak pressure conditions of 4.0±1.0 kbar are found in the Danubian nappes not altered by a subsequent syn-detachment metamorphic overprint. Highest temperatures in chloritoid schists and epidote–hornblende-bearing mylonites have been inferred for samples from the northern border of the Danubian window (between >300 and <400 °C). Along a syn- to post-detachment retrograde pressure path, post-dating the chloritoid formation, the occurrence of clinozoisite+chlorite+quartz suggests temperatures >300 °C in the northwest, while the association andalusite+quartz and biotite+muscovite indicates temperatures between 370 and 400 °C at <3.5 kbar in the northeast. It is demonstrated that the slope of the regression lines between KI and OMR data gives valuable qualitative information about the relative magnitudes of P and T: the slope of the regression line for the Danubian window samples indicates normal heat flow conditions during nappe stacking and hyperthermal conditions during the formation of the Getic detachment. High thermal gradient conditions can easily be explained by partly isothermal decompression during the Getic detachment event, the elevation of the geotherm being caused by crustal thinning and rapid exhumation of the Danubian units. Probably, also a higher heat-flux prevailed at the end of the Getic detachment, at a time when the retrograde chloritoid decomposition reactions took place, documenting late-stage HT greenschist facies metamorphism.
    Keywords:
    Metamorphic core complex
    Retrogressive deformation and metamorphism are often reported from the main low-angle shear zones and detachments of metamorphic core complexes, but their importance is not sufficiently emphasized for the footwall interior. In order to contribute to a better understanding of exhumation-related retrogression processes within and at the top of metamorphic core complexes, an integrated detailed microstructural, textural, 40Ar/39Ar geochronological, and thermobarometric study on the Naxos metamorphic core complex within the Aegean Sea is presented that provides a new perspective on low-grade retrogression during exhumation through shallow ductile levels. We found variable retrogressive deformation within the Naxos metamorphic core complex, which even pervasively affected significant portions of the migmatite-grade metamorphic core and remnant high-pressure areas of the metamorphic core complex, where retrogression led to pervasive formation of new fabrics within greenschist-facies metamorphic conditions during brittle-ductile transition. Within a continuum of retrogression, 40Ar/39Ar white mica dating allowed us to deduce three retrogressive ages at 16.52 ± 0.39 Ma (within the Naxos metamorphic core complex), 12.6 ± 0.28 Ma (Moutsounas detachment shear zone on the eastern boundary of the metamorphic core complex), and 10.43 ± 0.44 Ma to 8.40 ± 0.76 Ma (last ductile activity along the Naxos-Paros shear zone to the north of the metamorphic core complex). A further stage of retrogression at 12–11 Ma occurred along distinct low-angle normal faults within the middle Miocene Naxos Granite. Retrogressive microstructures, low-temperature calcite fabrics in marbles, and chloritization in metapelites (at temperatures of ∼350–130 °C) in the metamorphic core complex core resulted mainly from late-stage E-W shortening and folding. Late-stage flow of hydrous fluids resulted in resetting of fabrics and enhancement of ductile deformation. The middle–late Miocene retrogression events are also reflected by a similarly aged tectonic collapse basin in the hanging-wall unit above the detachment. The wide temporal range of retrogression within the Naxos metamorphic core complex coincides in age with retrogressive deformation within other metamorphic core complexes of the Aegean Sea. We interpret the long temporal range of retrogression to reflect outward, southwestward retreat of the subduction and sequential activation of major detachment zones.
    Metamorphic core complex
    CYCLADES
    Greenschist
    Isograd
    Detachment fault
    Foliation (geology)
    Citations (37)
    Abstract The Danubian window, characterized by diagenetic to low greenschist facies conditions at a high thermal gradient, is evidently of great interest for methodological studies, because high metamorphic thermal gradient conditions during low grade metamorphism have received little attention so far. The general increase in metamorphic grade from SW to NE in the Danubian window is indicated by mineral Parageneses studies, as well as by illite Kübler index (KI) measurements and organic matter reflectance (OMR). For the first time, this study distinguishes between metamorphic conditions related to Jurassic ocean floor, Cretaceous nappe stacking, post-collisional accommodation and syn-kinematic Getic detachment metamorphism and cooling after Oligocene exhumation. The occurrence of the prehnite–pumpellyite facies in the Severin–Cosustea units in the southeastern area is the result of Cretaceous metamorphism. Remnants of ocean floor metamorphism prevailed. The highest pressure is constrained by the upper stability limit of prehnite to be at around 4.0 kbar. The Danubian units situated within the diagenetic zone were not below 200 °C, due to epidote formation. The KI, OMR and mineral data, indicate diagenetic conditions. Assuming temperatures between >200 and <250 °C, pressures between 1.8 and 2.6 kbar were calculated using kinetic and numerical maturity models. Orogenic collisional Cretaceous peak pressure conditions of 4.0±1.0 kbar are found in the Danubian nappes not altered by a subsequent syn-detachment metamorphic overprint. Highest temperatures in chloritoid schists and epidote–hornblende-bearing mylonites have been inferred for samples from the northern border of the Danubian window (between >300 and <400 °C). Along a syn- to post-detachment retrograde pressure path, post-dating the chloritoid formation, the occurrence of clinozoisite+chlorite+quartz suggests temperatures >300 °C in the northwest, while the association andalusite+quartz and biotite+muscovite indicates temperatures between 370 and 400 °C at <3.5 kbar in the northeast. It is demonstrated that the slope of the regression lines between KI and OMR data gives valuable qualitative information about the relative magnitudes of P and T: the slope of the regression line for the Danubian window samples indicates normal heat flow conditions during nappe stacking and hyperthermal conditions during the formation of the Getic detachment. High thermal gradient conditions can easily be explained by partly isothermal decompression during the Getic detachment event, the elevation of the geotherm being caused by crustal thinning and rapid exhumation of the Danubian units. Probably, also a higher heat-flux prevailed at the end of the Getic detachment, at a time when the retrograde chloritoid decomposition reactions took place, documenting late-stage HT greenschist facies metamorphism.
    Metamorphic core complex
    Citations (22)
    Formation and exhumation processes of metamorphic core complexes are critical to understanding large-scale extension, which accommodate activity of mid- to lower-crustal levels. Structural observations, kinematic criteria, microstructural fabrics and metamorphic histories need to be examined in great detail. Generally, a metamorphic core complex has strongly deformed metamorphic gneiss core (footwall), detachment fault system and sedimentary cover (hanging wall) with lightly metamorphism and deformation. The footwall of gneiss dome presents a strongly ductile deformation domain, accompanied by different ages of granitic intrusions. The development of a metamorphic core complex is relative to the progression of different metamorphic and deformation stages during cooling and exhumation, producing a characteristic sequence of (overprinted) meso‑ and microstructures and textures within the low-angle extensional detachment along upper margins of the metamorphic core complex. The wide temporal range of retrogression within the metamorphic core complex coincides in age with retrogressive deformation. In many cases, upward motion along a detachment (ductile low-angle normal fault) and internal ductile thinning implies gradual exhumation with the youngest exhumation along a rolling hinge at the trailing edge of the metamorphic core complexes. The study aims to set up a scheme between several possible end-member type cases of exhumation mechanisms of metamorphic core complexes.
    Metamorphic core complex
    Detachment fault
    Dome (geology)
    Foliation (geology)
    Mylonite
    Isograd
    Abstract The Charleston Metamorphic Group in the central Paparoa Range, southwest Nelson, New Zealand, comprises metasedimentary and granitoid lithologies that have been metamorphosed to sillimanite‐almandine conditions. Mineral assemblages and thermobarometric calculations indicate metamorphic temperatures and pressures of c. 600 (±50)°C and 4 (±1) kbar, respectively. A K‐feldspar‐sillimanite isograd mapped in pelitic gneisses indicates that metamorphic grade increases to the southwest, though this is not verified by thermobarometry results, which vary little throughout the entire range. A strong foliation is present in all lithologies. This foliation is folded but typically strikes between north and northeast. The gneisses are intruded by several postmetamorphic granitoids, which in places retain their primary magmatic foliation (commonly striking between north and west), are unfolded and unmetamorphosed. These granitoids are distinct from the orthogneisses within Charleston Metamorphic Group. Together, the granitoids and gneisses comprise the Paparoa Metamorphic Core Complex, which was uplifted and unroofed in the mid Cretaceous, when estimated geothermal gradients were 50–90°C/km and uplift rates were 0.6–1.0 mm/a. Keywords: Paparoa RangePaparoa Metamorphic Core ComplexCharleston Metamorphic GroupKaramea SuiteRahu Suitethermobarometrymetamorphismdeformation
    Sillimanite
    Metamorphic core complex
    Isograd
    Foliation (geology)
    Andalusite
    Staurolite
    Through this work and comprehensive research on a large amount of previous data, four metamorphic core complexes were identified in the south of Liaodong peninsula, which were respectively Jinzhou metamorphic core complex, Wanfu metamorphic core complex, Xinfang metamorphic core complex and Lizifang metamorphic core complex. Xinfang metamorphic core complex and Lizifang metamorphic core complex were discovered and proposed for the first time. They have kinematic unity, geometric asymmetry, tectonic magma joint activity and the difference in formation time.
    Metamorphic core complex
    Peninsula
    ABSTRACT The highest-grade Barrovian-type metamorphic rocks of the North American Cordillera exposed today are Late Cretaceous in age and found within an orogen-parallel belt of metamorphic core complexes for which the tectonic histories remain controversial. Thermobarometric studies indicate that many of these Late Cretaceous metamorphic assemblages formed at pressures of &gt;8 kbar, conventionally interpreted as &gt;30 km depth by assuming lithostatic conditions. However, in the northern Basin and Range Province, detailed structural reconstructions and a growing body of contradictory geologic data in and around the metamorphic core complexes indicate these metamorphic rocks are unlikely to have ever been buried any deeper than ~15 km depth (~4 kbar, lithostatic). Recent models controversially interpret this discrepancy as the result of “tectonic overpressure,” whereby the high-grade mineral assemblages were formed under superlithostatic conditions without significant tectonic burial. We performed several detailed studies within the Snake Range metamorphic core complex to test the possibility that cryptic structures responsible for additional burial and exhumation might exist, which would refute such a model. Instead, our data highlight the continued discordance between paleodepth and paleopressure and suggest the latter may have reached nearly twice the lithostatic pressure in the Late Cretaceous. First, new detrital zircon U-Pb geochronology combined with finite-strain estimates show that prestrain thicknesses of the lower-plate units that host the high-pressure mineral assemblages correspond closely to the thicknesses of equivalent-age units in adjacent ranges rather than to those of the inferred, structurally overridden (para) autochthon, inconsistent with cross sections and interpretations that assume a lower plate with a deeper origin for these rocks. Second, new Raman spectroscopy of carbonaceous material of upper- and lower-plate units identified an ~200 °C difference in peak metamorphic temperatures across the northern Snake Range detachment but did not identify any intraplate discontinuities, thereby limiting the amount of structural excision to motion on the northern Snake Range detachment itself, and locally, to no more than 7–11 km. Third, mapped geology and field relationships indicate that a pre-Cenozoic fold truncated by the northern Snake Range detachment could have produced ~3–9 km of structural overburden above Precambrian units, on the order of that potentially excised by the northern Snake Range detachment but still far short of expected overburden based on lithostatic assumptions. Fourth, finite-strain measurements indicate a shortening (constrictional) strain regime favorable to superlithostatic conditions. Together, these observations suggest that pressures during peak metamorphism may have locally reached ~150%–200% lithostatic pressure. Such departures from lithostatic conditions are expected to have been most pronounced above regions of high heat flow and partial melting, and/or at the base of regional thrust-bounded allochthons, as is characteristic of the spatial distribution of Cordilleran metamorphic core complexes during the Late Cretaceous Sevier orogeny.
    Metamorphic core complex
    Geochronology
    Citations (8)