logo
    Reaction relationships in the Bayan Obo Fe-REE-Nb deposit Inner Mongolia, China: implications for the relative stability of rare-earth element phosphates and fluorocarbonates
    74
    Citation
    31
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Fluorite
    Rare-earth element
    Carbonatite
    Allanite
    Amphibole
    Titanite
    Fluorocarbonates and monazite are common economic REE minerals in carbonatite-related REE deposits, such as the largest known REE deposit at Bayan Obo, China. The geochemical evolution of REE minerals is a sensitive and effective indicator of delicate REE mineralization processes. In this study, the fluorocarbonates and monazites were classified into three generations, corresponding to three REE mineralizing stages. The first generation (Gen-1) of bastnäsite and monazite are generally characterized by elevated La/Ce, La/Nd and La/Lu ratios, with right-declining chondrite normalized REE distribution patterns. They have low Th and radiogenic Sr content, with forming age of about 1.3 Ga and εNd(t) around 0, indicating a primary origin and orthomagmatic crystallization from carbonatite melts. The second generation (Gen-2) of REE minerals, formed at 1.25–1.2 Ga, normally constitute banded aggregates with associated hydrothermal gangue minerals (fluorite, aegirine, sodium amphibole etc.). The Gen-2 REE minerals are featured by moderate-low La/Ce, La/Nd, La/Lu ratios but slightly elevated 87Sr/86Sr0 ratios, indicating a Mesoproterozoic hydrothermal origin related to carbonatitic fluids. Gen-2 bastnäsite and monazite precipitated earlier in low-fluid/rock-ratio environment with right-declining LREE distribution patterns, while the subsequent Gen-2 parisite and huanghoite display convex LREE patterns and higher OH/F ratios, indicative of relative La-depletion and increased ambient fluid/rock ratios during progressive hydrothermal REE mineralization. The third generation (Gen-3) of REE minerals are generally megacrysts in the vein-type ores formed in the early Paleozoic REE mineralization stage (470–420 Ma). The Gen-3 REE minerals are typified by significantly variable REE, Sr and Nd isotopic components, indicating extensive hydrothermal metasomatism and intense contamination of crustal material. Induced by activities of early Paleozoic subduction-related fluids, Gen-3 REE minerals were formed through local REE re-enrichment within the ore-hosting dolomite, rather than by introduction of REE from external sources. In this case study, a comprehensive model of the delicate REE mineralization processes of the giant Bayan Obo REE-Nb-Fe deposit has been established. This study highlights the great potential of fluorocarbonates and monazites widely distributed in carbonatite-related REE deposits as universal geochemical indicators of late-stage evolution of carbonatite and delicate magmatic-hydrothermal REE mineralization processes.
    Carbonatite
    Allanite
    Amphibole
    Peralkaline rock
    Fluorite
    Aegirine
    Abstract New fieldwork, mineralogical and geochemical data and interpretations are presented for the rare‐metal bearing A‐type granites of the Aja intrusive complex (AIC) in the northern segment of the Arabian Shield. This complex is characterized by discontinuous ring‐shaped outcrops cut by later faulting. The A‐type rocks of the AIC are late Neoproterozoic post‐collisional granites, including alkali feldspar granite, alkaline granite and peralkaline granite. They represent the outer zones of the AIC, surrounding a core of older rocks including monzogranite, syenogranite and granophyre granite. The sharp contacts between A‐type granites of the outer zone and the different granitic rocks of the inner zone suggest that the AIC was emplaced as different phases over a time interval, following complete crystallization of earlier batches. The A‐type granites represent the late intrusive phases of the AIC, which were emplaced during tectonic extension, as shown by the emplacement of dykes synchronous with the granite emplacement and the presence of cataclastic features. The A‐type granites consist of K‐feldspars, quartz, albite, amphiboles and sodic pyroxene with a wide variety of accessory minerals, including Fe‐Ti oxides, zircon, allanite, fluorite, monazite, titanite, apatite, columbite, xenotime and epidote. They are highly evolved (71.3–75.8 wt% SiO 2 ) and display the typical geochemical characteristics of post‐collisional, within‐plate granites. They are rare‐metal granites enriched in total alkalis, Nb, Zr, Y, Ga, Ta, REE with low CaO, MgO, Ba, and Sr. Eu‐negative anomalies (Eu/Eu * = 0.17–0.37) of the A‐type granites reflect extreme magmatic fractionation and perhaps the effects of late fluid‐rock interactions. The chemical characteristics indicate that the A‐type granites of the AIC represent products of extreme fractional crystallization involving alkali feldspar, quartz and, to a lesser extent, ferromagnesian minerals. The parent magma was derived from the partial melting of a juvenile crustal protolith with a mantle contribution. Accumulation of residual volatile‐rich melt and exsolved fluids in the late stage of the magma evolution produced pegmatite and quartz veins that cut the peripheries of the AIC. Post‐magmatic alteration related to the final stages of the evolution of the A‐type granitic magma, indicated by alterations of sodic amphibole and sodic pyroxene, hematitization and partial albitization.
    Allanite
    Titanite
    Peralkaline rock
    Carbonatite
    Alkali feldspar
    Aegirine
    Amphibole
    Migmatite
    Hornblende
    Pyroxene
    Citations (19)
    Approximately >50% of global rare earth element (REE) resources are hosted by carbonatite related deposits, of which monazite is one of the most important REE minerals. Monazite dominates more than 30 carbonatite-related REE deposits around the world, including currently exploited mineralization at Bayan Obo and Mount Weld. These deposits are widely distributed across all continents, except Antarctica. Though rare, monazite occurs as the primary mineral in carbonatite, and mostly presents as a secondary mineral that has a strong association with apatite. It can partially or completely replace thin or thick overgrowth apatite, depending on the availability of REE. Other mineral phases that usually crystallize together with monazite include barite, fluorite, xenotime, sulfide, and quartz in a carbonate matrix (e.g., dolomite, calcite). This review of monazite geochemistry within carbonatite-related REE deposits aims to provide information regarding the use of monazite as a geochemical indicator to track the formation history of the REE deposits and also supply additional information for the beneficiation of monazite. The chemical compositions of monazite are highly variable, and Ce-monazite is the dominant solid solution in carbonatite related deposits. Most monazite displays steep fractionation from La to Lu, absent of either Eu or Ce anomalies in the chondrite normalized REE plot. The other significant components are huttonite and cheratite. Some rare sulfur-bearing monazite is also identified with an SO3 content up to 4 wt %. A 147Sm/144Nd ratio with an average ~0.071 for monazite within carbonatite-related ores is similar to that of their host rocks (~0.065), and is the lowest among all types of REE deposits. Sm/Nd variation of monazite from a single complex reflects the differentiation stage of magma, which decreases from early to late. Based on the differences of Nd and Sr abundances, Nd isotopic composition for monazite can be used to track the magma source, whereas Sr isotopic composition records the signatures of the fluid source. Th-(U)-Pb age determination of the secondary monazite records variable thermal or metasomatic disturbances, and careful geochronological interpretation should be brought forward combined with other lines of evidence. ThO2 is the most difficult contamination in the beneficiation of monazite, luckily, the ThO2 content of monazite within carbonatite is generally low (<2 wt %).
    Carbonatite
    Rare-earth element
    Fluorite
    Allanite
    Metasomatism
    Citations (58)
    Abstract A carbonatite sample from Phalaborwa, South Africa, consists of apatite, magnetite and a calcitedolomite ‘perthite’ which is interpreted as being due to exsolution of dolomite from a high-Mg calcite precursor. Carbon and oxygen isotope data indicate that the carbonates are equilibrated. In situ ionmicroprobe analyses for Fe, Mn, Na, Si, Y, the REE s, Pb, Th and U give the following average concentrations (in ppm) in the sequence apatite, calcite, dolomite: Fe 98, 1680, 8190; Mn 61, 510, 615; Na 1171, 627, 125; Si 368; 1.6, 0.2; Sr 4447, 5418, 2393; Ba 37, 2189, 75; La 1245, 300, 67; Y 121, 50, 5.8; Pb 16, 5.4, 1.4; Th 20, 0.02, 0; U 2.4, 0, 0.01. The concentrations are reasonably uniform in both apatite and dolomite, but in calcite are more variable. Na, Si, Y, the REE s, Pb, Th and U partition into apatite relative to both carbonates (and, hence, the precursor carbonate); K D ap/cc for REE decreases from ∽4 for La to ∽2 for Tm. There is almost equal partitioning of Sr between apatite and calcite. During separation of dolomite from calcite, Sr and Ba partition strongly into calcite and all the other analysed elements, except Fe and Mn, also preferentially enter calcite. The REE s prefer calcite relative to dolomite, and the K D dol/cc is reasonably constant, only varying from 0.23 to 0.17. Sr, Ba and Pb in the carbonates, and their partitioning between the calcite and dolomite, differ from other carbonatite carbonates reported in the literature.
    Carbonatite
    Citations (83)
    On Prins Karls Forland, Svalbard Archipelago, a set of small iron oxide-apatite (IOA) ore bodies have been discovered within a crustal shear zone, which deformed the polymetamorphosed Neoproterozoic metasedimentary rocks. The ores have various styles and grades of deformation and distinct mineral assemblages whose compositions record a multi-stage tectonothermal and metasomatic history. These IOA ore bodies can be subdivided into fluorapatite-bearing and predominant low-Th monazite in the upper section of the shear zone and F-Cl apatite-bearing and predominant high Th-monazite in the structurally lower higher-grade deformed part. The first stage of alteration for these ore bodies resulted in metasomatic alteration of the apatite and liberation of REE and P redeposited as monazite and xenotime. The transport of dissolved REE and P was likely enhanced by deformation. The second stage of alteration had a distinct impact on the individual ore bodies, which resulted in the Th-enrichment of a small subset of the monazite grains in the upper section of the shear zone. In the lower section of the shear zone most of the monazite was replaced by high Th monazite. Here the original fluorapatite is enriched in Cl, Mn, and Sr, most probably due to interaction with CaCl2-rich fluids enriched in Sr and Mn that was scavenged from the hosting metasediments and altered metagabbros. Contrasting textures, mineral assemblages, and the geochemistry of the ores from distinct localities reflect involvement of compositionally different fluids from the gabbroic rocks and surrounding metasedimentary rocks during the protracted tectonothermal evolution of Prins Karls Forland. Therefore, it is concluded that the IOA ore bodies most likely resulted due to the fractionation of Fe, P, Ca, and REE from hypersaline fluids associated with the gabbros. Once deposited, these IOA ore bodies were subsequently altered during at least one and perhaps two later metamorphic events.
    Metasomatism
    Fluorapatite
    Carbonatite
    Rare-earth element
    Ore genesis
    Allanite
    Rare earth elements (REE) have been a focus of global interest because of their irreplaceable role in developing &#8220;low carbon&#8221; technologies. The Bayan Obo is the world&#8217;s largest REE deposit, but its genesis is still highly debated. It is considered to have a close genetic association with carbonatite due to the presence of the carbonatite dykes around the orefield, as well as the geochemical similarities between these dykes and the orebody. However, the evolution of the carbonatite dykes and their REE mineralization are still poorly understood, hindering the interpretation of the genesis of the deposit. More than 100 carbonatite dykes have been found within the area of 0-3.5km nearby the orebodies of the deposit. These dykes show significant variations in mineralogy and geochemistry and were classified into dolomite (DC) and calcite carbonatite (CC). The rocks show an evolutionary sequence from DC to CC, and their corresponding REE contents increased remarkably, with the latter having very high REE content (REE2O3 up to 20 wt. %). The DC is composed of coarse-grained dolomite, magnetite, calcite, and apatite without apparent REE mineralization. The medium-grained calcites, and significant amounts of REE minerals, such as monazite, bastn&#228;site, and synchysite, make up CC. The REE minerals have a close relationship with barite, quartz, and aegirine. The REE patterns of dolomite and calcite in DC showed a steep negative slope with a strong LREE enrichment. In contrast, the calcite from CC has a near-flat REE pattern enriched in both LREE and HREE. Besides, apatite and magnetite in CC are characterized by strong REE enrichment compared to those from DC. Based on detailed petrology, mineralogy, and element geochemistry, we propose that strong fractional crystallization of initial carbonatitic melts led the REE enriched in the residual melt/fluid to form REE mineralization. In addition, sulfate, alkalis, and silica components play an important role in REE transportation and precipitation.
    Carbonatite
    Rare-earth element
    Trace element
    Metasomatism