logo
    Developing an inverted Barrovian sequence; insights from monazite petrochronology
    155
    Citation
    98
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U–Th–Pb monazite ages, linked to pressure–temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ∼37 and 16 Ma in the southerly leading-edge of the thrust zone and between ∼37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ∼790 °C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ∼4–6 Ma apart along the ∼60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ∼655 °C and 9 kbar between ∼21 and 16 Ma in the more southerly-exposed transect and ∼14.5–12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ∼580 °C and 8.5 kbar at ∼16 Ma in the south, and 9–10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (∼23–19.5 Ma) overlaps with the timing of prograde metamorphism (∼21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ∼5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential 'paleo-thrusts' through time, cutting down from the original locus of MCT movement at the LHS–GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting.
    Keywords:
    Main Central Thrust
    For many metamorphic petrologists, the study of low-grade metamorphic rocks is something of a black art. Because low-grade rocks are frequently fine-grained, contain a wide variety of low-temperature minerals with limited stability fields, and have high porosities and fluid contents they are not as readily understood as higher grade metamorphic rocks. For these rocks, few, if any, of the standard thermobarometers or thermobarometric datasets are applicable and the derivation of fluid evolution histories is complicated by the high concentration of, frequently reduced, fluids. Low-grade metamorphism, at T <400°C and P <4–5 kbar, spans the P – T interval between what may be erroneously termed ‘proper’ metamorphism and the field of diagenesis, although in reality there is no clear or sharp break between the diagenetic and metamorphic fields. As such, techniques relevant to the study of low-grade metamorphism span those of both the sedimentary and metamorphic fields. This …
    Citations (0)
    In the Himalayan region of Sikkim, the well-developed inverted metamorphic sequence of the Main Central Thrust (MCT) zone is folded, thus exposing several transects through the structure that reached similar metamorphic grades at different times. In-situ LA-ICP-MS U–Th–Pb monazite ages, linked to pressure–temperature conditions via trace-element reaction fingerprints, allow key aspects of the evolution of the thrust zone to be understood for the first time. The ages show that peak metamorphic conditions were reached earliest in the structurally highest part of the inverted metamorphic sequence, in the Greater Himalayan Sequence (GHS) in the hanging wall of the MCT. Monazite in this unit grew over a prolonged period between ∼37 and 16 Ma in the southerly leading-edge of the thrust zone and between ∼37 and 14.5 Ma in the northern rear-edge of the thrust zone, at peak metamorphic conditions of ∼790 °C and 10 kbar. Monazite ages in Lesser Himalayan Sequence (LHS) footwall rocks show that identical metamorphic conditions were reached ∼4–6 Ma apart along the ∼60 km separating samples along the MCT transport direction. Upper LHS footwall rocks reached peak metamorphic conditions of ∼655 °C and 9 kbar between ∼21 and 16 Ma in the more southerly-exposed transect and ∼14.5–12 Ma in the northern transect. Similarly, lower LHS footwall rocks reached peak metamorphic conditions of ∼580 °C and 8.5 kbar at ∼16 Ma in the south, and 9–10 Ma in the north. In the southern transect, the timing of partial melting in the GHS hanging wall (∼23–19.5 Ma) overlaps with the timing of prograde metamorphism (∼21 Ma) in the LHS footwall, confirming that the hanging wall may have provided the heat necessary for the metamorphism of the footwall. Overall, the data provide robust evidence for progressively downwards-penetrating deformation and accretion of original LHS footwall material to the GHS hanging wall over a period of ∼5 Ma. These processes appear to have occurred several times during the prolonged ductile evolution of the thrust. The preserved inverted metamorphic sequence therefore documents the formation of sequential 'paleo-thrusts' through time, cutting down from the original locus of MCT movement at the LHS–GHS protolith boundary and forming at successively lower pressure and temperature conditions. The petrochronologic methods applied here constrain a complex temporal and thermal deformation history, and demonstrate that inverted metamorphic sequences can preserve a rich record of the duration of progressive ductile thrusting.
    Main Central Thrust
    Citations (155)