logo
    Paragenesis and composition of ore minerals in the Randalls BIF-hosted gold deposits, Yilgarn Craton, Western Australia: Implications for the timing of deposit formation and constraints on gold sources
    24
    Citation
    79
    Reference
    10
    Related Paper
    Citation Trend
    Keywords:
    Yilgarn Craton
    Arsenopyrite
    Banded iron formation
    Greenstone belt
    Paragenesis
    Greenschist
    Ore genesis
    Archean Banded Iron Formation (BIF) hosts high-grade (>55% Fe) iron ore at the Matthew Ridge prospect, in the Jack Hills greenstone belt, of the Narryer terrane, Yilgarn Craton. The ca 3000 Ma (SHRIMP U–Pb on zircons) Algoma-type BIF contains magnetite–hematite ore zones that are a product of successive overprinting hydrothermal alteration events. Rock types in the prospect area include Archean gneiss, metasedimentary rocks and BIF that are interlayered with dolerite. All rocks record peak amphibolite metamorphic mineral assemblages that are variably replaced by greenschist facies metamorphic minerals. Hypogene iron ore formed owing to: (1) the replacement of primary silica-rich bands in the quartz–magnetite BIF by Stage 1 hypogene magnesite and magnetite alteration; and (2) subsequent removal of Stage 1 magnesite to concentrate residual Stage 1 magnetite. These magnetite-rich ore bodies define <50 m-long by 20 m-wide lenses that trend NE and coincide with the hinge zones of Z-shaped, tight F1 folds, which are most likely parasitic folds to the regional NE-trending, steeply NE-plunging anticline in the Jack Hills greenstone belt. Magnetite-rich ore zones are enriched in Fe and depleted in SiO2, with only minor changes in other major oxides and trace elements, compared with least-altered BIF. Magnetite-rich ore zones are locally cut by shear zone-hosted, talc–magnetite hydrothermal alteration overprinted by talc–microplaty hematite alteration. The shear zones and both talc mineral assemblages formed during a second deformation event that was characterised by NNE–SSE shortening. The third deformation event resulted in at least two generations of NE- to NW-trending extensional veins and strike-slip faults that locally cut the talc-rich shear zones. Supergene goethite–hematite replaces magnetite-rich ore bodies within 80 m of the present surface. The strong structural control and distinct hydrothermal alteration assemblages of the Matthew Ridge prospect are the best exploration indices for high-grade magnetite-rich ore in the region.
    Banded iron formation
    Yilgarn Craton
    Greenstone belt
    Greenschist
    Hypogene
    Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) image analysis is a proven method for mapping mineral and geochemical zonation associated with a variety of ore types, including orogenic Au, porphyry Cu-(Mo), porphyry-skarn, Pb-Zn-Au, and Mn systems. Only recently has this technique been applied, in a general sense, to mineral alteration mapping and exploration for Fe ore deposits hosted by banded iron formations (BIFs). For this reason, the Archean Weld Range greenstone belt that hosts the Beebyn and Madoonga Fe ore deposits has been chosen as a case study area to test the effectiveness of ASTER imaging techniques for the identification of Fe orebodies. Banded iron formations in the Weld Range district crop out as a series of parallel, 10- to 500-m-wide, 55 wt % Fe) iron ore deposits host Archean hypogene magnetite and specular hematite orebodies that are locally replaced by more recently formed, supergene goethite-hematite ore within several hundred meters of the present erosion surface. A common feature of all ore types hosted by BIFs is a high Fe content relative to SiO2. Consequently, all types of Fe ore in the Weld Range district are best identified by the ferric iron to silica index and the opaques to silica index, for the reason that these ASTER image products detect surfaces that are rich in (opaque) Fe oxide minerals and have a low silica abundance. Gabbro, dolerite, and basalt country rocks located within 20 m of high-grade Fe ore zones in BIFs are altered to hypogene Fe-rich chlorite and, more rarely, are altered by Fe-rich talc. These hypogene alteration zones are best detected by the ferrous iron content in MgOH minerals and carbonates and the FeOH group abundance products, which identify hypogene Fe chlorite and Fe talc. This study demonstrates that integrated remote spectral sensing techniques (ASTER, airborne hyperspectral, and radiometric) used in conjunction with geophysical surveys (aeromagnetic and gravity) are useful for district-scale exploration for Fe orebodies hosted by BIFs. The spectral sensing techniques are a rapid, cost-effective, and efficient means for generating and ranking exploration targets that are located in areas with restricted physical access.
    Yilgarn Craton
    Greenstone belt
    Banded iron formation
    Iron ore
    Citations (40)