A microphysical model for strong velocity weakening in phyllosilicate‐bearing fault gouges
218
Citation
66
Reference
10
Related Paper
Citation Trend
Abstract:
Previous rotary shear experiments, performed on a halite‐muscovite fault gouge analogue system have shown that the presence of phyllosilicates, under conditions favoring the operation of cataclasis and pressure solution in the matrix phase, can have major effects on the frictional behavior of gouges. While 100% halite and 100% muscovite samples exhibit rate‐independent frictional/brittle behavior, the strength of mixtures containing 10–30% muscovite is both normal stress and sliding velocity‐dependent. At high sliding velocities (>1 μ m s −1 ), such mixtures show unusually marked velocity weakening, along with the development of a structureless, cataclastic microstructure. In the present paper, a micromechanical model is developed in an attempt to explain this behavior. The model assumes a granular flow process involving competition between intergranular dilatation and compaction by pressure solution. The predictions of the model agree favorably with the experimental results. Extension of the model to quartz‐mica systems implies that the presence of phyllosilicates plus the operation of pressure solution can strongly promote (unstable) velocity‐weakening behavior at rapid slip rates on natural faults, under midcrustal conditions. Static stress drop predictions based on the model agree reasonably well with estimates from seismic observations. Our results may help explain the discrepancy between laboratory‐derived rate‐and‐state friction parameter values, obtained for dry, low‐strain and/or single‐phase rock systems, and the values for natural fault rocks inferred from seismological data.Keywords:
Cataclastic rock
Fault gouge
Halite
Muscovite
Pressure solution
Brittleness
Overburden pressure
Previous rotary shear experiments, performed on a halite‐muscovite fault gouge analogue system have shown that the presence of phyllosilicates, under conditions favoring the operation of cataclasis and pressure solution in the matrix phase, can have major effects on the frictional behavior of gouges. While 100% halite and 100% muscovite samples exhibit rate‐independent frictional/brittle behavior, the strength of mixtures containing 10–30% muscovite is both normal stress and sliding velocity‐dependent. At high sliding velocities (>1 μ m s −1 ), such mixtures show unusually marked velocity weakening, along with the development of a structureless, cataclastic microstructure. In the present paper, a micromechanical model is developed in an attempt to explain this behavior. The model assumes a granular flow process involving competition between intergranular dilatation and compaction by pressure solution. The predictions of the model agree favorably with the experimental results. Extension of the model to quartz‐mica systems implies that the presence of phyllosilicates plus the operation of pressure solution can strongly promote (unstable) velocity‐weakening behavior at rapid slip rates on natural faults, under midcrustal conditions. Static stress drop predictions based on the model agree reasonably well with estimates from seismic observations. Our results may help explain the discrepancy between laboratory‐derived rate‐and‐state friction parameter values, obtained for dry, low‐strain and/or single‐phase rock systems, and the values for natural fault rocks inferred from seismological data.
Cataclastic rock
Fault gouge
Halite
Muscovite
Pressure solution
Brittleness
Overburden pressure
Cite
Citations (218)
Cataclastic rock
Muscovite
Strain hardening exponent
Fault gouge
Cite
Citations (51)
Abstract This paper describes the results of petrographical and meso‐ to microstructural observations of brittle fault rocks in cores obtained by drilling through the Nojima Fault at a drilling depth of 389.52 m. The zonation of deformation and alteration in the central zone of the fault is clearly seen in cores of granite from the hanging wall, in the following order: (i) host rock, which is characterized by some intragranular microcracks and in situ alteration of mafic minerals and feldspars; (ii) weakly deformed and altered rocks, which are characterized by transgranular cracks and the dissolution of mafic minerals, and by the precipitation of zeolites and iron hydroxide materials; (iii) random fabric fault breccia, which is characterized by fragmentation, by anastomosing networks of transgranular cracks, and by the precipitation of zeolites and iron hydroxide materials; and (iv) fault gouge, which is characterized by the precipitation of smectite and localized cataclastic flow. This zonation implies that the fault has been weakened gradually by fluid‐related fracturing over time. In the footwall, a gouge layer measuring only 15 mm thick is present just below the surface of the Nojima Fault. These observations are the basis for a model of fluid behavior along the Nojima Fault. The model invokes the percolation of meteoric fluids through cracks in the hanging wall fault zone during interseismic periods, resulting in chemical reactions in the fault gouge layer to form smectite. The low permeability clay‐rich gouge layer sealed the footwall. The fault gouge was brecciated during coseismic or postseismic periods, breaking the seal and allowing fluids to readily flow into the footwall, thus causing a slight alteration. Chemical reactions between fluids and the fault breccia and gouge generated new fault gouge, which resealed the footwall, resulting in a low fluid condition in the footwall during interseismic periods.
Fault gouge
Cataclastic rock
Breccia
Wall rock
Pressure solution
Brittleness
Cite
Citations (21)
Abstract Carbonate faults commonly contain small amounts of phyllosilicate in their slip zones, due to pressure solution and/or clay smear. To assess the effect of phyllosilicate content on earthquake propagation in carbonate faults, friction experiments were performed at 1.3 m/s on end‐members and mixtures of calcite, illite‐smectite, and smectite gouge. Experiments were performed at 9 MPa normal load, under room humidity and water‐saturated conditions. All dry gouges show initial friction values ( μ i ) of 0.51–0.58, followed by slip hardening to peak values of 0.61–0.76. Slip weakening then ensues, with friction decreasing to steady state values ( μ ss ) of 0.19–0.33 within 0.17–0.58 m of slip. Contrastingly, wet gouges containing 10–50 wt % phyllosilicate exhibit μ i values between 0.07 and 0.52 followed by negligible or no slip hardening; rather, steady state sliding ( μ ss ≪ 0.2) is attained almost immediately. Microstructurally, dry gouges show intense cataclasis and wear within localized principal slip zones, plus evidence for thermal decomposition of calcite. Wet gouges exhibit distributed deformation, less intense cataclasis, and no evidence of thermal decomposition. It is proposed that in wet gouges, slip is distributed across a network of weak phyllosilicate formed during axial loading compaction prior to shear. This explains the (1) subdued cataclasis and associated lack of slip hardening, (2) distributed nature of deformation, and (3) lack of evidence for thermal decomposition, due to low friction and lack of slip localization. These findings imply that just 10% phyllosilicate in the slip zone of fluid‐saturated carbonate faults can (1) dramatically change their frictional behavior, facilitating rupture propagation to the surface, and (2) significantly lower frictional heating, preventing development of microscale seismic markers.
Cataclastic rock
Fault gouge
Hardening (computing)
Pressure solution
Cite
Citations (36)
Halite
Cataclastic rock
Pressure solution
Fault gouge
Mylonite
Muscovite
Brittleness
Overburden pressure
Cite
Citations (168)
A seismically active low-angle normal fault is recognized at depth in the Northern Apennines, Italy, where recent exhumation has also exposed ancient examples at the surface, notably the Zuccale fault on Elba. Field-based and microstructural studies of the Zuccale fault reveal that an initial phase of pervasive cataclasis increased fault zone permeability, promoting influx of CO 2 -rich hydrous fluids. This triggered low-grade alteration and the onset of stress-induced dissolution–precipitation processes (e.g. pressure solution) as the dominant grain-scale deformation process in the pre-existing cataclasites leading to shear localization and the formation of a narrow foliated fault core dominated by fine-grained hydrous mineral phases. These rocks exhibit ductile deformation textures very similar to those formed during pressure-solution-accommodated ‘frictional–viscous’ creep in experimental fault rock analogues. The presence of multiple hydrofracture sets also points to the local attainment of fluid overpressures following development of the foliated fault core, which significantly enhanced the sealing capacity of the fault zone. A slip model for low-angle normal faults in the Apennines is proposed in which aseismic frictional–viscous creep occurs on a weak, slow-moving (slip rate <1 mm a −1 ) fault, interspersed with small seismic ruptures caused by cyclic hydrofracturing events. Our findings are potentially applicable to other examples of low-angle normal faults in many tectonic settings.
Cataclastic rock
Fault gouge
Pressure solution
Cite
Citations (195)
Two recent experimental studies on the frictional behavior of synthetic gouge-bearing faults under the operation of pressure solution are compared. One is triaxial shear experiments on quartz gouge at high pressure-temperature hydrothermal conditions (Kanagawa et al., 2000), and the other is rotary shear experiments on halite gouge at atmospheric pressure and room temperature in the presence of methanol-water mixtures (Bos et al., 2000). In spite of quite different experimental settings and conditions, the results of these two series of experiments are strikingly similar; both cataclasis and pressure solution being active during the experiments, gouge strength rate-controlled by cataclasis, two different frictional behaviors of slip hardening and softening, slip hardening associated with gouge compaction, distributed deformation and wall-rock failure, slip softening associated with localized slip along the gouge-wall-rock interface, and the transition from slip-hardening to slip-softening behavior according to decreasing rate of pressure solution. Although there is a difference in velocity dependence of strength between quartz and halite gouges, these similarities clearly demonstrate the important effects of pressure solution on the frictional behavior of gouge-bearing faults.
Fault gouge
Cataclastic rock
Halite
Hardening (computing)
Pressure solution
Cite
Citations (4)
Cataclastic rock
Fault gouge
Pressure solution
Overburden pressure
Cite
Citations (31)
Cataclastic rock
Fault gouge
Pressure solution
Deformation bands
Microscale chemistry
Cite
Citations (43)