Combinations of different-class collectors in selective sulphide-ore flotation
10
Citation
0
Reference
10
Related Paper
Citation Trend
Keywords:
Froth flotation
Xanthate
Xanthate
Dithiocarbamate
Froth flotation
Cite
Citations (0)
Xanthate
Cite
Citations (3)
Sulfide Minerals
Cite
Citations (27)
The primary coexisting mineral with galena is sphalerite. Hence, it is critical to selectively separate galena from sphalerite by flotation. In this work, thiourea and related derivatives as potential flotation collectors for separating galena from sphalerite were investigated. Thiourea and its related derivatives were found to be effective selective collectors in batch flotation studies of a single mineral, with 1,1-diphenylthiourea (11DTA) emerging as the best choice. Galena has superior floatability compared to sphalerite in the presence of 11DTA, and the recovery difference between the two minerals at pH 8 (where the 11DTA concentration is 5 × 10−6 mol/L) is around 38%. This was revealed in batch flotation studies using artificial mixed minerals. Moreover, the findings from the measurements of adsorption amount, FTIR, zeta potential and XPS revealed that 11DTA has a strong adsorption on galena yet a relatively weak adsorption on sphalerite. Additionally, DFT calculations demonstrated that sphalerite exhibits stronger hydrophilicity than galena, and 11DTA possessed a better affinity for galena.
Sulfide Minerals
Lead sulfide
Cite
Citations (2)
Sulfide Minerals
Passivation
Galvanic cell
Cite
Citations (58)
Xanthate
Dithiocarbamate
Froth flotation
Cite
Citations (38)
Xanthate
Mineral processing
Froth flotation
Carbonate Ion
Cite
Citations (20)
Pyrite is a major gangue mineral associated with galena and other valuable minerals, and it is necessary to selectively remove pyrite to upgrade the lead concentrate by froth flotation. In this study, the flotation experiments of a single mineral and mixed minerals were performed using chitosan with different molecular weights (MW = 2−3, 3−6, 10 and 100 kDa) as a depressant, ethyl xanthate as a collector, and terpineol as a frother, in a bid to testify the separation of pyrite from galena. Flotation results showed that the selective flotation of pyrite from galena can be achieved under the preferred reagent scheme, i.e., 400 g/t chitosan (10 kDa), 1600 g/t ethyl xanthate, and 100 g/t terpineol, while chitosan with other molecular weights cannot. Furthermore, the results of the zeta potential and contact angle measurements revealed that chitosan (10 kDa) has a strong adsorption on galena yet a very weak adsorption on pyrite at the dosage of 400 g/t. This study showed that chitosan (10 kDa) has great potential in the industrial flotation separation of pyrite from lead concentrates.
Xanthate
Depressant
Froth flotation
Gangue
Zeta potential
Cite
Citations (23)