logo
    The Early Cretaceous Yangzhaiyu Lode Gold Deposit, North China Craton: A Link Between Craton Reactivation and Gold Veining
    142
    Citation
    139
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    The Yangzhaiyu gold deposit is one of numerous lode gold deposits in the Xiaoqinling district, southern margin of the North China Craton. Gold mineralization is hosted in Neoarchean to early Paleoproterozoic amphibolite facies metamorphic rocks and consists of auriferous quartz veins and subordinate disseminated ores in the vein-proximal alteration zone. Ore-related hydrothermal alteration is dominated by sericite + quartz + sulfide assemblages close to gold veins, and biotite + quartz + pyrite ± chlorite ± epidote alteration generally distal from mineralization. Pyrite is the predominant sulfide mineral, locally coexisting with minor amounts of chalcopyrite, sphalerite, and galena. Gold occurs mostly as free gold enclosed in or filling microfractures of pyrite and quartz and is also present in equilibrium with Au-bearing tellurides, mainly petzite and calaverite coexisting with hessite, tellurobismuthite, and altaite. Fluid inclusion studies suggest that gold veins were deposited at intermediate temperatures (175°–313°C) from aqueous or aqueous-carbonic fluids with moderate salinity (5–14 wt % NaCl equiv). δ 34S values of sulfide minerals range mainly from 2.0 to 4.4‰, whereas auriferous quartz vein samples have δ 18O values of 12.4 to 9.6‰, with calculated δ 18OH2O values of 6.0 to 3.2‰. Gold-related pyrite grains yield elevated 3He/4He ratios (1.51-0.32 Ra) relative to crustal reservoirs and mantle-like 20Ne/22Ne and 21Ne/22Ne ratios (9.90-9.68 and 0.029, respectively). The stable and noble gas isotopes thus suggest deep-seated, most likely magmatic and mantle-derived, sources for the ore fluids, sulfur and, by inference, other components in the ore system. 40Ar/39Ar dating of ore-related sericite and biotite separates indicates two episodes of gold genesis at 134.5 to 132.3 and 124.3 to 123.7 Ma. The mineralization ages overlap zircon U-Pb ages of 141.0 ± 1.6 to 125.8 ± 1.4 Ma (2 σ ) for the Wenyu and Niangniangshan monzogranite Plutons and a number of mafic to intermediate dikes intruding these Plutons, all being proximal to the Yangzhaiyu gold deposit. The synchronism of gold genesis and magmatism provides additional weights of evidence for a magmatic derivation of ore fluids and sulfur. The geochronologic data also suggest that gold veining took place billions of years after the stabilization of the North China Craton and associated metamorphism in the Late Archean to early Paleoproterozoic. This contrasts sharply to lode gold deposits in other Precambrian cratons that formed predominantly in Late Archean to Paleoproterozoic, temporarily and genetically related to regional high-grade metamorphism and compressional or transpressional tectonism. Available data have demonstrated that the North China Craton was reactivated in the late Mesozoic, as marked by voluminous igneous rocks, faulted-basin formation, high crustal heat flow, and widespread metamorphic core complexes in the eastern part of the craton. It is thus suggested that the Yangzhaiyu gold deposit, together with other deposits of similar ages in the Xiaoqinling district, were products of this craton reactivation event. Lithospheric extension and extensive magmatism related to the craton reactivation may have provided sufficient heat energy, fluid, and sulfur required for the formation of the gold deposits.
    Keywords:
    Sericite
    δ34S
    Jinshachang Pb-Zn deposit,located in Yunnan province and the northwest of Sichuan-Yunnan-Guizhou(SYG) Pb-Zn-Ag multi-metal mineralization area,is mainly hosted in the Upper Neoproterozoic carbonate rocks of Dengying Group.The ore minerals mainly contain sphalerite and galena,and the gangue minerals mainly contain barite,fluorite and quartz.The δ34S values of sphalerite minerals are in the range between 3.6‰ and 13.4‰ with an average value of 5.7‰.The δ34S values of galena range from 6.0‰ to 9.0‰ with an average value of 7.1‰.Two δ34S values of barite are 34.8‰ and 34.5‰ and consistent with that of sulfate from the Lower Cambrian stratum,indicating that the sulfur of barite were derived from this stratum.Because the homogenization temperatures of fluid inclusions exceed the suitable temperature for bacterial sulfate reduction,therefore this process is not an efficient path for the production of reduced sulfur in this district.If sulfides were derived from the Cambrian stratum due to thermochemical sulfate reduction,sulfides in this deposit should preserve a minimum δ34S value of 14‰ which exceeding that of sulfide from Jinshachang deposit.Therefore,this process is not the only source of reduced sulfur.Considered the fact that the ore district is surrounded by basalts and δ34S values of sulfide related to magmatic activities are relatively low,the reduced sulfur of sulfide may be derived from magmatic activities.The δ34S values of sphalerite are higher than that of coexisting galena,indicating that sulfur isotopic composition in ore-forming fluid had partly reached equilibrium.The equilibrium temperatures calculated by using the δ34S values of surfur-bearing mineral pairs are consistent well with the homogenization temperature of fluid inclusions.
    δ34S
    Sulfide Minerals
    Gangue
    Citations (1)
    The Jinshachang lead–zinc deposit is mainly hosted in the Upper Neoproterozoic carbonate rocks of the Dengying Group and located in the Sichuan–Yunnan–Guizhou(SYG) Pb–Zn–Ag multimetal mineralization area in China.Sulfides minerals including sphalerite,galena and pyrite postdate or coprecipitate with gangue mainly consisting of fluorite,quartz,and barite,making this deposit distinct from most lead–zinc deposits in the SYG.This deposit is controlled by tectonic structures,and most mineralization is located along or near faults zones.Emeishan basalts near the ore district might have contributed to the formation of orebodies.The δ34S values of sphalerite,galena,pyrite and barite were estimated to be 3.6‰–13.4‰,3.7‰–9.0‰,6.4‰ to 29.2‰ and 32.1‰–34.7‰,respectively.In view of the similar δ34S values of barite and sulfates being from the Cambrian strata,the sulfur of barite was likely derived from the Cambrian strata.The homogenization temperatures(T ≈ 134–383°C) of fluid inclusions were not suitable for reducing bacteria,therefore,the bacterial sulfate reduction could not have been an efficient path to generate reduced sulfur in this district.Although thermochemical sulfate reduction process had contributed to the production of reduced sulfur,it was not the main mechanism.Considering other aspects,it can be suggested that sulfur of sulfides should have been derived from magmatic activities.The δ34S values of sphalerite were found to be higher than those of coexisting galena.The equilibrium temperatures calculated by using the sulfur isotopic composition of mineral pairs matched well with the homogenization temperature of fluid inclusions,suggesting that the sulfur isotopic composition in ore-forming fluids had reached a partial equilibrium.
    δ34S
    Gangue
    Tetrahedrite
    Citations (0)
    The primary coexisting mineral with galena is sphalerite. Hence, it is critical to selectively separate galena from sphalerite by flotation. In this work, thiourea and related derivatives as potential flotation collectors for separating galena from sphalerite were investigated. Thiourea and its related derivatives were found to be effective selective collectors in batch flotation studies of a single mineral, with 1,1-diphenylthiourea (11DTA) emerging as the best choice. Galena has superior floatability compared to sphalerite in the presence of 11DTA, and the recovery difference between the two minerals at pH 8 (where the 11DTA concentration is 5 × 10−6 mol/L) is around 38%. This was revealed in batch flotation studies using artificial mixed minerals. Moreover, the findings from the measurements of adsorption amount, FTIR, zeta potential and XPS revealed that 11DTA has a strong adsorption on galena yet a relatively weak adsorption on sphalerite. Additionally, DFT calculations demonstrated that sphalerite exhibits stronger hydrophilicity than galena, and 11DTA possessed a better affinity for galena.
    Sulfide Minerals
    Lead sulfide
    Citations (2)