Open access to harmonised digital data describing Earth's surface and subsurface holds immense value for society. This paper highlights the significance of open access to digital geoscience data ranging from the shallow topsoil or seabed to depths of 5 km. Such data play a pivotal role in facilitating endeavours such as renewable geoenergy solutions, resilient urban planning, supply of critical raw materials, assessment and protection of water resources, mitigation of floods and droughts, identification of suitable locations for carbon capture and storage, development of offshore wind farms, disaster risk reduction, and conservation of ecosystems and biodiversity. EuroGeoSurveys, the Geological Surveys of Europe, have worked diligently for over a decade to ensure open access to harmonised digital European geoscience data and knowledge through the European Geological Data Infrastructure (EGDI). EGDI acts as a data and information resource for providing wide-ranging geoscience data and research, as this paper demonstrates through selected research data and information on four vital natural resources: geoenergy, critical raw materials, water, and soils. Importantly, it incorporates near real-time remote and in-situ monitoring data, thus constituting an invaluable up-to-date database that facilitates informed decision-making, policy implementation, sustainable resource management, the green transition, achieving UN Sustainable Development Goals (SDGs), and the envisioned future of digital twins in Earth sciences. EGDI and its thematic map viewer are tailored, continuously enhanced, and developed in collaboration with all relevant researchers and stakeholders. Its primary objective is to address societal needs by providing data for sustainable, secure, and integrated management of surface and subsurface resources, effectively establishing a geological service for Europe. We argue that open access to surface and subsurface geoscience data is crucial for an efficient green transition to a net-zero society, enabling integrated and coherent surface and subsurface spatial planning.
Monazite from granulite-facies rocks of the Åreskutan Nappe in the Scandinavian Caledonides (Seve Nappe Complex, Sweden) was dated using in-situ U-Th-total Pb chemical geochronology (CHIME).Multi-spot analyses of a non-sheared migmatite neosome yielded an age of 439 ± 3 Ma, whereas a sheared migmatite gave 433 ± 3 Ma (2σ).Although the obtained dates are rather similar, a continuous array of single dates from c. 400 Ma to c. 500 Ma suggests possibly a more complex monazite age pattern in the studied rocks.The grouping and recalculation of the obtained results in respect to Y-Th-U systematics and microtextural context allowed distinguishing several different populations of monazite grains/growth zones.In the migmatite neosome, low-Th and low-Y domains dated at 455 ± 11 Ma are considered to have grown under highgrade sub-solidus conditions, most likely during a progressive burial metamorphic event.The monazites with higher Th and lower Y yielded an age of 439 ± 4 Ma marking the subsequent partial melting event caused by decompression.The youngest (423 ± 13 Ma) Y-enriched monazite reveals features of fluid-assisted growth and is interpreted to date the emplacement of the Åreskutan onto the Lower Seve Nappe.In the sheared migmatite, the high-Th and low-U (high Th/U) monazite with variable Y contents yielded an age of 438 ± 4 Ma, which is interpreted to date the partial melting event.Relatively U-rich rims on some of the monazite grains again reveal features of fluid-assisted growth, and thus their age of 424 ± 6 Ma is interpreted as timing of the nappes emplacement.These results call, however, for further more precise, isotopic (preferably ion microprobe) dating of monazite in the studied rocks.
A total of 176 samples of till were collected on island of Öland.Till samples were collected from the C-horizon of handdug pits, at a variable depth due to thin soil cover.After vacuumdrying, the samples are sieved stepwise to fraction <0.063 mm and analysed for major and trace elements at the SGU laboratory.Partial leach in Aqua Regia (a mixture of HCl and HNO 3 ) and nitric acid (7M HNO 3 ) was applied and followed by ICP-MS analysis.The lithology of parent material is the main controlling factor of till chemical composition.On Öland, the bedrock consists entirely of sedimentary rocks of early Palaeozoic age deposited from lower Cambrian to middle Ordovician.Thin moraines and weathering soils are most common types on Öland.The moraine is more sandy in the north and clayey in the south.The till geochemistry on Öland reflects well underlying bedrock, dominated by limestone, with minor sandstone and shale (alum shale) occurrences.In southern Öland, till geochemistry is strongly influenced by black shale and enrichment in the following elements can be observed: Ag, Al, As, Cd, Co, Cu, Mo, Ni, Rb, Sb, Sc, Sn, Th, Tl, U, Zn and REE.The most pronounced anomalies occur in the vicinity of the historical alum shale works at Degerhamn.In northern part of the island, north of Borgholm, enrichment in La, Pb, Sn, Y and Zn can be explained by till transported from the continent (following westeast ice transport directions).The main goal of the geochemical mapping programme at SGU is to provide high quality, consistently sampled and analysed data.The till geochemical data from Öland reflect regional natural geochemical variations in glacial till.The results can be further used for planning purposes, environmental monitoring, agriculture, forestry, veterinary and environmental medicine.
Abstract In central parts of the Scandinavian Caledonides, detrital zircon signatures provide evidence of the change in character of the Baltoscandian crystalline basement, from the characteristic Late Palaeoproterozoic granites of the Transscandinavian Igneous Belt (TIB, c. 1650–1850 Ma) in the foreland Autochthon to the typical, mainly Mesoproterozoic-age profile ( c. 950–1700 Ma) of the Sveconorwegian Orogen of southwestern Scandinavia in the hinterland. Late Ediacaran to Early Cambrian shallow-marine Vemdal quartzites of the Jämtlandian Nappes (Lower Allochthon) provide strong bimodal signatures with TIB (1700–1800 Ma) and Sveconorwegian, sensu stricto (900–1150 Ma) ages dominant. Mid-Ordovician turbidites (Norråker Formation) of the Lower Allochthon in Sweden, sourced from the west, have unimodal signatures dominated by Sveconorwegian ages with peaks at 1000–1100 Ma, but with subordinate components of older Mesoproterozoic zircons (1200–1650 Ma). Latest Ordovician shallow-marine quartzites also yield bimodal signatures, but are more dispersed than in the Vemdal quartzites. In the greenschist facies lower parts of the Middle Allochthon, the Fuda (Offerdal Nappe) and Särv Nappe signatures are either unimodal or bimodal (950–1100 and/or 1700–1850 Ma), with variable dominance of the younger or older group, and subordinate other Mesoproterozoic components. In the overlying, amphibolite to eclogite facies lower part of the Seve Nappe Complex, where the metasediments are dominated by feldspathic quartzites, calcsilicate-rich psammites and marbles, most units have bimodal signatures similar to the Särv Nappes, but more dispersed; one has a unimodal signature very similar to the Ordovician turbidites of the Jämtlandian Nappes. In the overlying Upper Allochthon, Lower Köli (Baltica-proximal, Virisen Terrane), Late Ordovician quartzites provide unimodal signatures dominated by Sveconorwegian ages ( sensu stricto ). Further north in the Scandes, previously published zircon signatures in quartzites of the Lower Allochthon are similar to the Vemdal quartzites in Jämtland. Data from the Kalak Nappes at 70°N are in no way exotic to the Sveconorwegian Baltoscandian margin. They do show a Timanian influence (ages of c. 560–610 Ma), as would be expected from the palinspastic reconstructions of the nappes. Thus the detrital zircon signatures reported here and published elsewhere provide supporting evidence for a continuation northwards of the Sveconorwegian Orogen in the Neoproterozoic, from type areas in the south, along the Baltoscandian margin of Baltica into the high Arctic. Supplementary material: LA-ICP-MS U–Pb analyses are available at http://www.geolsoc.org.uk/SUP18699 .