This study tests the hypothesis that lake sediments containclimate–related information that can be detected by near–infrared spectrometry (NIRS), and that NIRS can be used to infer past climatic changes from analysis of sediment cores. NIRS is a rapid and non–destructive technique that measures attributes of the chemical composition of organic materials. A training set of 76 lakes from northern Sweden, spanning a broad altitudinal gradient, was used to assess whether lake altitude and vegetation zones can be modelled from NIR spectra of surface sediments (0–1 cm) using partial least squares (PLS) regression and soft independent modelling of class analogies (SIMCA) classification. Lake altitude served as a surrogate variable reflecting differences in climatic conditions among sites. After spectral filtering using orthogonal signal correction (OSC), cross-validated predictions explained 86% of the variance in altitude and the prediction error (root mean square error) was 78 m, corresponding to 8.3%o of the gradient (390–1250 m above sea level). To evaluate the significance of NIR spectral differences between surface sediments of lakes in different vegetation zones (mountain–birch forest, dwarf shrub and alpine heath), principal component analysis (PCA) models were developed separately for lakes in each vegetation zone. Multivariate classification analysis demonstrated that NIR spectra of surficial sediments differed between lakes located in different vegetation zones. A separate sediment data set from 56 lakes was used to assess sediment ageing effects on NIR signals. Marked similarities between NIR spectra in surface sediments (0–1 cm) and sediments from 1–2 cm depth indicated that degradation of organic material following sediment consolidation resulted in little loss or change of climate–related information. Finally, to assess the ability of NIRS methods to reconstruct past climatic changes over Holocene timescales, we applied the NIRS–altitude model to sediments in a core from a small mountain lake. Estimates of mean July air temperature based on the NIRS–altitude transfer function showed similar trends compared with inferences from chironomids, diatoms and pollen from the same core. Overall, the results indicate that changes in NIR spectra from lake sediments reflect differences in climate, and that NIRS models based on surface–sediment samples can be applied to sediment cores for retrospective analysis.
The results of a multiproxy study reconstructing the climate history of the last 9300 years in northern Sweden are presented. It is based on diatom, chironomid and pollen analyses, as well as near-infrared spec troscopy (NIRS), of a radiocarbon dated sediment core from Sjuodjijaure (67°22N, 18°04E), situated 100 m above tree-line in the Scandes mountains. Mean July air temperature was reconstructed using transfer functions established for the region. The biological proxies show significant changes in composition during the Holocene and the inferred temperatures all follow the same general trend. For the period between about 9300 to 7300 cal. BP the reconstructions should be interpreted with caution due to the lack of convincing modern analogues in the training set. However the reconstruction suggest that July temperature was on average about the same as today, with several rapid short-term cold and warm periods. Cold periods were dated to about 8500, 8200 and 7600 cal. years BP and a warm period to about 7700 cal. BP. About 7300 cal. BP, a major shift to a warmer climate occurred. Pine migrated into the area, which was previously covered with birch forest. From the mid-Holocene until today the sediment record suggests a descending tree-limit and a gradual lowering of July temperature.