Vessel monitoring is one of the most important maritime applications of Synthetic Aperture Radar (SAR) data. Because of the dihedral reflections between the vessel hull and sea surface and the trihedral reflections among superstructures, vessels usually have strong backscattering in SAR images. Furthermore, in high-resolution SAR images, detailed information on vessel structures can be observed, allowing for vessel classification in high-resolution SAR images. This paper focuses on the feature analysis of merchant vessels, including bulk carriers, container ships and oil tankers, in 3 m resolution COSMO-SkyMed stripmap HIMAGE mode images and proposes a method for vessel classification. After preprocessing, a feature vector is estimated by calculating the average value of the kernel density estimation, three structural features and the mean backscattering coefficient. Support vector machine (SVM) classifier is used for the vessel classification, and the results are compared with traditional methods, such as the K-nearest neighbor algorithm (K-NN) and minimum distance classifier (MDC). In situ investigations are conducted during the SAR data acquisition. Corresponding Automatic Identification System (AIS) reports are also obtained as ground truth to evaluate the effectiveness of the classifier. The preliminary results show that the combination of the average value of the kernel density estimation and mean backscattering coefficient has good ability for classifying the three types of vessels. When adding the three structural features, the results slightly improve. The result of the SVM classifier is better than that of K-NN and MDC. However, the SVM requires more time, when the parameters of the kernel are estimated.
Ship monitoring has a wide range of applications in marine activities and maritime management. Spaceborne synthetic aperture radar (SAR) technology has an advantage in ship detection over a vast region compared to other technologies. Recently, high-resolution SAR satellites have made ship recognition and classification possible from space. In July 2010, a ship recognition campaign was performed in the East China Sea. In situ investigation of ship types was carried out during the periods when the Italian COSMO-SkyMed satellites passed over the test site. Automatic Identification System (AIS) information was collected. Based on this information, a novel hierarchical ship classifier for COSMO-SkyMed SAR data was proposed. A total of 41 ship chips were cut from the SAR images for later classification. After preprocessing of the ship chips, geometric and backscattering characteristics of various ship types were analyzed. The ships were classified into bulk carriers, container ships, and oil tankers, with an accuracy of 93.3%, 80.0%, and 72.7%, respectively. Further investigation of the backscattering features with various illumination conditions is still in progress.
The extraction of brain tissue from brain MRI images is an important pre-procedure for the neuroimaging analyses. The brain is bilaterally symmetric both in coronal plane and transverse plane, but is usually asymmetric in sagittal plane. To address the over-smoothness, boundary leakage, local convergence and asymmetry problems in many popular methods, we developed a brain extraction method using an active contour neighborhood-based graph cuts model. The method defined a new asymmetric assignment of edge weights in graph cuts for brain MRI images. The new graph cuts model was performed iteratively in the neighborhood of brain boundary named the active contour neighborhood (ACN), and was effective to eliminate boundary leakage and avoid local convergence. The method was compared with other popular methods on the Internet Brain Segmentation Repository (IBSR) and OASIS data sets. In testing cross IBSR data set (18 scans with 1.5 mm thickness), IBSR data set (20 scans with 3.1 mm thickness) and OASIS data set (77 scans with 1 mm thickness), the mean Dice similarity coefficients obtained by the proposed method were 0.957 ± 0.013, 0.960 ± 0.009 and 0.936 ± 0.018 respectively. The result obtained by the proposed method is very similar with manual segmentation and achieved the best mean Dice similarity coefficient on IBSR data. Our experiments indicate that the proposed method can provide competitively accurate results and may obtain brain tissues with sharp brain boundary from brain MRI images.
High-resolution synthetic aperture radar (SAR) data have been widely used in marine environmental protection, marine environmental monitoring, and marine traffic management. Ship detection is one of the important parts of SAR data for marine applications. This letter focuses on the feature analysis of ships in high-resolution SAR images and proposes an improved optimizing algorithm for ship detection. A fast block detector is designed to extract sea clutter in a uniform local area, and then a constant false alarm rate detector is employed. Based on the kernel density estimation of ships, aspect ratio, and pixel points, ships are identified. TerraSAR-X and COSMO-SkyMed images are used to test our algorithm. The experimental results show that this algorithm can be implemented with time-saving, high-precision ship extraction, feature analysis, and detection.