Abstract Soils are widely considered the primary terrestrial organic matter pool mediating carbon transactions with the atmosphere and groundwater. Because soils are both a host and a product of rhizosphere activity, they are thought to mark the location where photosynthetic fixation of carbon dioxide (CO 2 ) is balanced by the oxidation of organic matter. However, in many terrestrial environments, the rhizosphere extends below soils and into fractured bedrock, and it is unknown if the resulting biological and hydrologic dynamics in bedrock have a significant impact on carbon cycling. Here we show substantial production of CO 2 in weathered bedrock at 4–8 m below the thin soils (<0.5 m thick) of a Northern California forest using innovative monitoring technology for sampling gases and water in fractured rock. The deep CO 2 production supports a persistent upward flux of CO 2(g) year‐round from bedrock to soil, constituting between 2% and 29% of the average daily CO 2 efflux from the land surface. When water is rapidly transported across the fractured bedrock vadose zone, nearly 50% of the CO 2 produced in the bedrock dissolves into water, promoting water‐rock interaction and export of dissolved inorganic carbon (DIC) from the unsaturated zone to groundwater, constituting as much as 80% of the DIC exiting the hillslope. Such CO 2 production in weathered bedrock is subject to unique moisture, temperature, biological, and mineralogical conditions which are currently missing from terrestrial carbon models.
Abstract Warming across the western United States continues to reduce snowpack, lengthen growing seasons, and increase atmospheric demand, leading to uncertainty about moisture availability in montane forests. As many upland forests have thin soils and extensive rooting into weathered bedrock, deep vadose‐zone water may be a critical late‐season water source for vegetation and mitigate forest water stress. A key impediment to understanding the role of the deep vadose zone as a reservoir is quantifying the plant‐available water held there. We quantify the spatiotemporal dynamics of rock moisture held in the deep vadose zone in a montane catchment of the Rocky Mountains. Direct measurements of rock moisture were accompanied by monitoring of precipitation, transpiration, soil moisture, leaf‐water potentials, and groundwater. Using repeat nuclear magnetic resonance and neutron‐probe measurements, we found depletion of rock moisture among all our monitored plots. The magnitude of growing season depletion in rock moisture mirrored above‐ground vegetation density and transpiration, and depleted rock moisture was from ∼0.3 to 5 m below ground surface. Estimates of storage indicated weathered rock stored at least 4%–12% of mean annual precipitation. Persistent transpiration and discrepancies between estimated soil matric potentials and leaf‐water potentials suggest rock moisture may mitigate drought stress. These findings provide some of the first measurements of rock moisture use in the Rocky Mountains and indicated rock moisture use is not just confined to periods of drought or Mediterranean climates.
Abstract The water storage capacity of the root zone can determine whether plants survive dry periods and control the partitioning of precipitation into streamflow and evapotranspiration. It is currently thought that top‐down, climatic factors are the primary control on this capacity via their interaction with plant rooting adaptations. However, it remains unclear to what extent bottom‐up, geologic factors can provide an additional constraint on storage capacity. Here we use a machine learning approach to identify regions with lower than climatically expected apparent storage capacity. We find that in seasonally dry California these regions overlap with particular geologic substrates. We hypothesize that these patterns reflect diverse mechanisms by which substrate can limit storage capacity, and highlight case studies consistent with limited weathered bedrock extent (melange in the Northern Coast Range), toxicity (ultramafic substrates in the Klamath‐Siskiyou region), nutrient limitation (phosphorus‐poor plutons in the southern Sierra Nevada), and low porosity capable of retaining water (volcanic formations in the southern Cascades). The observation that at regional scales climate alone does not “size” the root zone has implications for the parameterization of storage capacity in models of plant dynamics (and the interrelated carbon and water cycles), and also underscores the importance of geology in considerations of climate‐change induced biome migration and habitat suitability.
Abstract Plant water stress in response to rainfall variability is mediated by subsurface water storage, yet the controls on stored plant‐available water remain poorly understood. Here we develop a probabilistic water balance model for Mediterranean climates that relates the amount of water stored over the wet season to annual rainfall statistics and subsurface storage capacity in soil and weathered bedrock. This model predicts that low storage capacity—relative to winter rainfall—results in similar year‐to‐year summer water availability, as both relatively wet and dry winters replenish storage. Observed water balances in seven catchments in the Northern California Coast Ranges exhibited this dynamic. We hypothesized that plants would be decoupled from precipitation variability at these storage‐capacity‐limited sites and observed that summer productivity and water use (inferred from the enhanced vegetation index) were independent of winter rainfall totals. These areas emerged largely unscathed from recent extreme drought, despite widespread plant mortality elsewhere.
Various field studies have concluded that shallow groundwater in weathered bedrock underlying hillslopes can contribute to both base and stormflow and thus dominate runoff. The processes associated with recharge from the ground surface, through this unsaturated zone, have received little study, yet they influence runoff dynamics, the chemical evolution of water, and moisture availability. Here we use five measurement systems to document soil and rock moisture dynamics within a 4000 m 2 zero‐order basin in which all runoff occurs through weathered argillite. At this site, the weathered bedrock zone (in which the groundwater fluctuates by 8 m seasonally) varies in depth from ∼4 m at the base of the hillslope to nearly 19 m near the hill top. An aggregate‐rich, porous, 0.5 m thick soil overlies the weathered bedrock. We find that during the first rains of the wet season, water rapidly travels meters into the weathered bedrock zone. Consistently, however, groundwater at some places responds quickly to the first major storm, well before the wetting front has been detected much beyond about 1 m. Furthermore, throughout the wet season, the lower portion of the unsaturated weathered bedrock shows little or no moisture change. These observations suggest a fracture‐dominated flow path, leading to a highly variably groundwater response across the hillslope for a given storm. Seasonal changes in rock moisture content are greatest in the first 5 to 10 m depth and may exceed the magnitude of moisture changes in the soil, suggesting that it could constitute a significant unmapped moisture reservoir.
Abstract Observing the critical zone (CZ) below the top few meters of readily excavated soil is challenging yet crucial to understanding Earth surface processes. Near‐surface geophysical methods can overcome this challenge by imaging the CZ in three dimensions (3‐D) over hundreds of meters, thus revealing lateral heterogeneity in subsurface properties across scales relevant to understanding hillslope erosion, weathering, and biogeochemical cycling. We imaged the CZ under a soil‐mantled ridge developed in granitic terrain of the Laramie Range, Wyoming, using data from five boreholes and a 3‐D volume (970 by 600 by 80 m) of seismic velocities generated by ordinary kriging of 25 two‐dimensional seismic refraction transects. The observed CZ structure under the ridge broadly matches predictions of two recently proposed hypotheses: the uppermost surface of weathered bedrock is consistent with subsurface weathering driven by bedrock drainage and subsurface topography defining the top of unweathered protolith is consistent with fracturing predicted from topographic and regional stresses. In contrast, differences in slope aspect along the ridge are too subtle to explain observed variations in regolith structure. Our observations suggest that multiple processes, each of which may dominate at different depths, work in concert to regulate deep CZ structure.