Little is known about the effects of woody plant encroachment-a recent but pervasive phenomenon-on the hydraulic properties of bedrock substrates. Recent work using stream solute concentrations paired with weathering models suggests that woody plant encroachment accelerates limestone weathering. In this field study, we evaluate this hypothesis by examining bedrock in the Edwards Plateau, an extensive karst landscape in Central Texas. We compared a site that has been heavily encroached by woody plants (mainly Quercus fusiformis and Juniperus ashei), with an adjacent site that has been maintained free of encroachment for the past eight decades. Both sites share the same bedrock, as confirmed by trenching, and originally had very few trees, which enabled us to evaluate how encroachment impacted the evolution of hydraulic properties over a period of no more than 80 years. Using in situ permeability tests in boreholes drilled into the weathered bedrock, we found that the mean saturated hydraulic conductivity of the bedrock was higher-by an order of magnitude-beneath woody plants than in the areas where woody plants have been continuously suppressed. Additionally, woody plant encroachment was associated with greater regolith thickness, greater plant rooting depths, significantly lower rock hardness, and a 24-44% increase in limestone matrix porosity. These findings are strong indicators that woody plant encroachment enhances bedrock weathering, thereby amplifying its permeability-a cycle of mutual reinforcement with the potential for substantial changes within a few decades. Given the importance of shallow bedrock for ecohydrological and biogeochemical processes, the broader impacts of woody plant encroachment on weathering rates and permeability warrant further investigation.
Abstract Bedrock weathering regulates nutrient mobilization, water storage, and soil production. Relative to the mobile soil layer, little is known about the relationship between topography and bedrock weathering. Here, we identify a common pattern of weathering and water storage across a sequence of three ridges and valleys in the sedimentary Great Valley Sequence in Northern California that share a tectonic and climate history. Deep drilling, downhole logging, and characterization of chemistry and porosity reveal two weathering fronts. The shallower front is ∼7 m deep at the ridge of all three hillslopes, and marks the extent of pervasive fracturing and oxidation of pyrite and organic carbon. A deeper weathering front marks the extent of open fractures and discoloration. This front is 11 m deep under two ridges of similar ridge‐valley spacing, but 17.5 m deep under a ridge with nearly twice the ridge‐valley spacing. Hence, at ridge tops, the fraction of the hillslope relief that is weathered scales with hillslope length. In all three hillslopes, below this second weathering front, closed fractures and unweathered bedrock extend about one‐half the hilltop elevation above the adjacent channels. Neutron probe surveys reveal that seasonally dynamic moisture is stored to approximately the same depth as the shallow weathering front. Under the channels that bound our study hillslopes, the two weathering fronts coincide and occur within centimeters of the ground surface. Our findings provide evidence for feedbacks between erosion and weathering in mountainous landscapes that result in systematic subsurface structuring and water routing.
Abstract A better understanding of how vegetation influences alluvial channels could improve (a) assessments of channel stability and flood risks, (b) applications of vegetation as a river management tool, and (c) predictions of channel responses to climate change and other human impacts. We take advantage of a natural field experiment in the semi‐arid to arid Henry Mountains, Utah, USA: large spatial differences in bed and bank vegetation are found along some alluvial channels due to localized perennial springs caused by aquicludes in the underlying bedrock. Airborne LiDAR topography and flood modeling are used to constrain channel morphology, vegetation density, and flow velocity at different flood discharges for three spring‐fed reaches along intermittently flowing streams. The spatial distribution of vegetation quantitatively influences both the magnitude and direction of channel adjustment. Reaches with abundant bed vegetation are significantly wider (by an average of ≈50%), with shallower flows and lower velocities, than reaches with little bed vegetation. Reaches with dense channel bank vegetation are ≈25% narrower and ≈25% deeper than sparsely vegetated reaches. We interpret that sediment grain size influences the spatial distribution of vegetation within spring reaches, but that bank vegetation may be more important than grain size for “threshold” width adjustments. Widths, depths, and velocities are fairly insensitive to whether local hydraulic roughness is parameterized in terms of local vegetation density or is assumed spatially constant, suggesting that the underlying “bare earth” topography of the channel bed and banks exerts more control on local flow than does local vegetation density in this landscape.
Abstract Quantifying the volume of water that is stored in the subsurface is critical to studies of water availability to ecosystems, slope stability, and water‐rock interactions. In a variety of settings, water is stored in fractured and weathered bedrock as rock moisture. However, few techniques are available to measure rock moisture in unsaturated rock, making direct estimates of water storage dynamics difficult to obtain. Here, we use borehole nuclear magnetic resonance (NMR) at two sites in seasonally dry California to quantify dynamic rock moisture storage. We show strong agreement between NMR estimates of dynamic storage and estimates derived from neutron logging and mass balance techniques. The depths of dynamic storage are up to 9 m and likely reflect the depth extent of root water uptake. To our knowledge, these data are the first to quantify the volume and depths of dynamic water storage in the bedrock vadose zone via borehole NMR.
Abstract Mercury sequestration in regolith (soils + weathered bedrock) is an important ecosystem service of the critical zone. This has largely remained unexplored, due to the difficulty of sample collection and the assumption that Hg is predominantly sequestered within surface soils (here we define as 0–0.3 m). We measured Hg concentrations and inventories in weathering profiles at six Critical Zone Observatories (CZOs): Boulder Creek in the Front Range of Colorado, Calhoun in the South Carolina Piedmont, Eel River in coastal northern California, Luquillo in the tropical montane forest of Puerto Rico, Shale Hills of the valley and ridges of central Pennsylvania, and Southern Sierra in the Sierra Nevada range of California. Surface soils had higher Hg concentrations than the deepest regolith samples, except for Eel River, which had lower Hg concentrations in surface soils compared to regolith. Using Ti normalization, CZOs with <12% rock‐derived Hg (Boulder Creek, Calhoun, and Southern Sierra) had Hg peaks between 1.5 and 8.0 m in depth. At CZOs with >50% rock‐derived Hg, Eel River Hg concentrations and pools were greatest at >4.0 m in the weathering profile, while Luquillo and Shale Hills had peaks at the surface that diminished within 1.0 m of the surface. Hg and total organic C were only significantly correlated in regolith at Luquillo and Shale Hills CZOs, suggesting that Hg sorption to organic matter may be less dominant than clays or Fe(II) sulfides in deeper regolith. Our results demonstrate the importance of Hg sequestration in deep regolith, below typical soil sampling depths.
Abstract Water age and flow pathways should be related; however, it is still generally unclear how integrated catchment runoff generation mechanisms result in streamflow age distributions at the outlet. Here, we combine field observations of runoff generation at the Dry Creek catchment with StorAge Selection (SAS) age models to explore the relationship between stream water age and runoff pathways. Dry Creek is a 3.5 km 2 catchment in the Northern California Coast Ranges with a Mediterranean climate, and, despite an average rainfall of ≈1,800 mm/yr, is an oak savannah due to the limited hillslope water storage capacity. Runoff lag to peak—after initial seasonal wet‐up—is rapid (∼1–2 hr), and total annual streamflow consists predominantly of saturation overland flow, based on field mapping of saturated extents and an inferred runoff threshold for the expansion of saturation extent beyond the geomorphic channel. SAS modeling based on daily isotope sampling reveals that streamflow is typically older than 1 day. Since streamflow primarily consists of overland flow, a significant portion of overland flow must not be event‐rain but instead derive from older, nonevent groundwater returning to the surface, consistent with field observations of exfiltrating head gradients, return flow through macropores, and extensive saturation days after storm events. We conclude that even in a watershed fed primarily by overland flow, runoff is primarily not composed of event water. Our findings have implications for the interpretation of stream chemistry and the assumptions built into widely used hydrograph separation inferences, namely, the assumption that overland flow consists of new (event) water.