Visible, near-infrared, thermal, and Mössbauer spectroscopic data from the exposed, bright track soil at the "Paso Robles" site within Gusev crater, Mars, indicate the presence of Fe3+-sulfates and possibly Fe3+-phosphates admixed with the host soil. When the spectroscopic analyses are combined with constraints imposed by chemical data, the determined dominant Fe3+-sulfate component is hydrous, and all of the spectroscopic methods suggest that it is probably ferricopiapite or some closely related, structurally similar species, possibly mixed with other Fe3+ sulfates such as butlerite or parabutlerite, or perhaps (para)coquimbite, fibroferrite, or metahohmanite. Such an assemblage is consistent with formation in a highly oxidized, relatively dehydrated environment with the bulk-sulfate assemblage having OH/(OH + 2SO4) of < ~0.4. Some Fe3+ is likely to be associated with phosphates in the soil in the form of ferristrunzite or strengite.
Borate minerals composed of [Bφ3] triangles and/or [Bφ4] tetrahedra (φ = O or OH) commonly exhibit complex polymerizations to form diverse polyanion groups. High-resolution solid-state magic angle spinning (MAS) 11B and 25Mg NMR spectroscopy at moderate to ultrahigh magnetic fields (9.4, 14.1, and 21.1 T) allows for very accurate NMR parameters to be obtained for the borate dimorphs, inderite, and kurnakovite, [MgB3O3(OH)5·5H2O]. Improved agreement between experimental results and ab initio density functional theory (DFT) calculations using Full Potential Linear Augmented Plane Wave (FP LAPW) with WIEN2k validates the geometry optimization procedures for these minerals and permits refinements of the hydrogen positions relative to previous X-ray diffraction crystal structures. In particular, the optimized structures lead to significant improvements in the positions of the H atoms, suggesting that H atoms have significant effects on the 11B and 25Mg NMR parameters in inderite and kurnakovite. This study shows that combined high-resolution NMR spectroscopy and ab initio theoretical modeling provides an alternative method for the refinement of crystal structures, especially H positions.