Bathymetric highs resist subduction producing large- to small-scale change in the morphology of the subduction zone: Increase of the outer-rise curvature, trench indentation and large-scale slides and slumps in the fore-arc region. At the plate interface, bathymetric highs induce geometrical and frictional changes that can produce increase or decrease of the local coupling, and thus having an effect on the likelihood of occurrence of large megathrust earthquakes. Numerical models predict complex strain and stress patterns arising from subduction of such relief mainly driven by the size and relative geometry of trench and subducted high. However, the collision and subduction of bathymetric highs is investigated mainly via geophysical and geological surveys since seismic sequences have rarely illuminated the subduction of seafloor relief. Here, we report of a year-long and very energetic earthquake activity (10 Mw 6.5-7.5) at the Loyalty Ridge – Vanuatu trench at both the plate interface and in the outer-rise region. The spatio-temporal and magnitude of the earthquakes revealed complex release of the accrued flexural strain along the outer-rise and a pronounced segmentation of the interface with repeating M7 earthquakes, low aftershock activity and a large “aseismic” zone. The collision and subduction of the Loyalty Ridge along the Vanuatu trench seem to indicate a frictionally segmented interface where large megathrust earthquakes are unlikely to occur.
Abstract The resistance of bathymetric highs to subduction results in large‐scale morphological distortions of the outer‐rise, trench, and fore‐arc regions. Once subducted, bathymetric highs induce frictional segmentation along the plate interface that may result in increase or decrease of the plate coupling. However, the mechanics of the collision is inferred mostly from geophysical and geological surveys since earthquakes rarely illuminate finer details of the subduction of seafloor relief. A year‐long and energetic seismic sequence at the Loyalty Ridge (LR)‐Vanuatu Trench allowed us to characterize how strain is released along the collision zone. Earthquakes revealed complex fracturing in the outer‐rise and fore‐arc regions and segmentation of the interface with both limited magnitude events and aftershock productivity. The complex earthquake activity associated to the collision and subduction of the LR appears to support a frictionally segmented interface where M w ≥ 8 megathrust earthquakes are unlikely to nucleate.
<p>Sierra Negra is a basaltic shield volcano in the Galapagos Archipelago (Ecuador) and is the largest of the Galapagos volcanoes. The 2018 eruption was a complex event that included eruptive fissures opening on the northern rim and north-western flank. In this study, we report observations of seismic signals recorded on a temporary dense local network consisting of 14 seismometers and nearby permanent seismic stations, and analyze this data set to retrieve the source mechanisms of moderate pre- and co-eruptive seismic events (body-wave magnitude range of M3.5-5.3). Because of the shallow depths of the seismic events (<2 km) and short source-receiver distances (~1.5-10 km), that are comparable to or shorter than the wavelengths of radiated waves, the effect of near- and intermediate-field terms on dynamic displacements can be significant and hence the far-field assumption may not be well-suited for determining fault-plane solutions. Therefore, we pay special attention on the polarization properties of seismic waves excited at the near-field and intermediate-field ranges, and model and analyze complete displacement wave-fields to determine seismic sources. The source mechanism solutions are also interpreted in light of the volcanic unrest leading to the 2018 eruption, GPS observations, and reported regional centroid moment tensors.</p>
Seismological agencies play an important role in seismological research and seismic hazard mitigation by providing source parameters of seismic events (location, magnitude, mechanism), and keeping these data accessible in the long term. The availability of catalogues of seismic source parameters is an important requirement for the evaluation and mitigation of seismic hazards, and the catalogues are particularly valuable to the research community as they provide fundamental long-term data in the geophysical sciences. This work is well motivated by the rising demand for developing more robust and efficient methods for routine source parameter estimation, and ultimately generation of reliable catalogues of seismic source parameters. Specifically, the aim of this work is to develop some methods to determine hypocentre location and temporal evolution of seismic sources based on regional and teleseismic observations more accurately, and investigate the potential of these methods to be integrated in near real-time processing.
To achieve this, a location method that considers several events simultaneously and improves the relative location accuracy among nearby events has been provided. This method tries to reduce the biasing effects of the lateral velocity heterogeneities (or equivalently to compensate for limitations and inaccuracies in the assumed velocity model) by calculating a set of timing corrections for each seismic station. The systematic errors introduced into the locations by the inaccuracies in the assumed velocity structure can be corrected without explicitly solving for a velocity model. Application to sets of multiple earthquakes in complex tectonic environments with strongly heterogeneous structure such as subduction zones and plate boundary region demonstrate that this relocation process significantly improves the hypocentre locations compared to standard locations.
To meet the computational demands of this location process, a new open-source software package has been developed that allows for efficient relocation of large-scale multiple seismic events using arrival time data. Upon that, a flexible location framework is provided which can be tailored to various application cases on local, regional, and global scales. The latest version of the software distribution including source codes, a user guide, an example data set, and a change history, is freely available to the community.
The developed relocation algorithm has been modified slightly and then its performance in a simulated near real-time processing has been evaluated. It has been demonstrated that applying the proposed technique significantly reduces the bias in routine locations and enhance the ability to locate the lower magnitude events using only regional arrival data.
Finally, to return to emphasis on global seismic monitoring, an inversion framework has been developed to determine the seismic source time function through direct waveform fitting of teleseismic recordings. The inversion technique can be systematically applied to moderate- size seismic events and has the potential to be performed in near real-time applications. It is exemplified by application to an abnormal seismic event; the 2017 North Korean nuclear explosion.
The presented work and application case studies in this dissertation represent the first step in an effort to establish a framework for automatic, routine generation of reliable catalogues of seismic event locations and source time functions.
Abstract Induced seismicity is one of the main factors that reduces societal acceptance of deep geothermal energy exploitation activities, and felt earthquakes are the main reason for closure of geothermal projects. Implementing innovative tools for real-time monitoring and forecasting of induced seismicity was one of the aims of the recently completed COSEISMIQ project. Within this project, a temporary seismic network was deployed in the Hengill geothermal region in Iceland, the location of the nation’s two largest geothermal power plants. In this paper, we release raw continuous seismic waveforms and seismicity catalogues collected and prepared during this project. This dataset is particularly valuable since a very dense network was deployed in a seismically active region where thousand of earthquakes occur every year. For this reason, the collected dataset can be used across a broad range of research topics in seismology ranging from the development and testing of new data analysis methods to induced seismicity and seismotectonics studies.