This paper summarizes the results of field and laboratory investigations, including whole-rock geochemistry and radiogenic isotopes, of outcrop and drill core samples from volcanogenic massive sulfide (VMS) deposits and associated metaigneous rocks in the Wood River area of the Bonnifield mining district, northern Alaska Range (see fig. 1 of Editors' Preface and Overview). U-Pb zircon igneous crystallization ages from felsic rocks indicate a prolonged period of Late Devonian to Early Mississippian (373±3 to 357±4 million years before present, or Ma) magmatism. This magmatism occurred in a basinal setting along the ancient Pacific margin of North America. The siliceous and carbonaceous compositions of metasedimentary rocks, Precambrian model ages based on U-Pb dating of zircon and neodymium ages, and for some units, radiogenic neodymium isotopic compositions and whole-rock trace-element ratios similar to those of continental crust are evidence for this setting. Red Mountain (also known as Dry Creek) and WTF, two of the largest VMS deposits, are hosted in peralkaline metarhyolite of the Mystic Creek Member of the Totatlanika Schist. The Mystic Creek Member is distinctive in having high concentrations of high-field-strength elements (HFSE) and rare-earth elements (REE), indicative of formation in a within-plate (extensional) setting. Mystic Creek metarhyolite is associated with alkalic, within-plate basalt of the Chute Creek Member; neodymium isotopic data indicate an enriched mantle component for both members of this bimodal (rhyolite-basalt) suite. Anderson Mountain, the other significant VMS deposit, is hosted by the Wood River assemblage. Metaigneous rocks in the Wood River assemblage span a wide compositional range, including andesitic rocks, which are characteristic of arc volcanism. Our data suggest that the Mystic Creek Member likely formed in an extensional, back-arc basin that was associated with an outboard continental-margin volcanic arc that included rocks of the Wood River assemblage. We suggest that elevated HFSE and REE trace-element contents of metavolcanic rocks, whose major-element composition may have been altered, are an important prospecting tool for rocks of VMS deposit potential in east-central Alaska.
Porphyry and epithermal deposits are important sources of base and precious metals. Most actively mined deposits have been exhumed such that ore bodies are relatively close to the surface and are therefore locatable and economic to extract. Identifying and characterizing concealed deposits, particularly more deeply buried porphyry deposits, represents a far greater challenge for mineral exploration, and will become progressively more important as near-surface resources are gradually exhausted over time. We report high-precision 40Ar/39Ar dates for coarsely crystalline alunite that precipitated from magmatic steam in open fractures in Oligocene dacitic volcanic rocks, and a SHRIMP 206Pb/238U zircon date for one of several rhyolite dikes present at Alunite Ridge and Deer Trail Mountain, Utah. Both the magmatic-steam alunite and rhyolite dikes are related to concealed intrusions. The rhyolite dike yielded an age of 30.72 ± 0.36 Ma, which is older than a commonly cited 27.1 Ma age estimate for the Three Creeks Tuff Member of the Bullion Canyon Volcanics that is cut by the dike. 40Ar/39Ar data for samples of magmatic-steam alunite and sericite from six mines and prospects provide evidence for at least two periods of episodic hydrothermal activity at ca. 15.7–15.1 Ma and ca. 14.7–13.8 Ma, with the older and younger pulses of activity recorded at the more eastern and western sites, respectively. These two periods of hydrothermal activity are consistent with previous interpretations that Alunite Ridge and Deer Trail Mountain are underlain by two concealed porphyry stocks. 40Ar/39Ar analyses of individual bands in a sample of massive, centimeter-scale banded vein alunite yield indistinguishable ages with a weighted mean of 13.98 ± 0.12 Ma, consistent with a short-lived (≲250 ka) magmatic event with episodic vapor discharge recurring on short timescales (≲36 ka). 40Ar/39Ar geochronology of magmatic-steam alunite is a valuable tool to constrain the timing and duration of magmatic hydrothermal activity associated with unexposed intrusions and potentially porphyry deposits, and therefore may be useful in exploration.
Research Article| January 01, 2000 Age and Pb-Sr-Nd isotopic systematics of plutonic rocks from the Green Mountain magmatic arc, southeastern Wyoming : Isotopic characterization of a Paleoproterozoic island arc system Wayne R. Premo; Wayne R. Premo 1U.S. Geological Survey, MS 963, Box 25046, Denver Federal Center, Denver, CO 80225, U.S.A. Search for other works by this author on: GSW Google Scholar R. R. Loucks R. R. Loucks 2Research School of Earth Sciences, Australian National University, Mills Road, Canberra, ACT 0200 Australia Search for other works by this author on: GSW Google Scholar Author and Article Information Wayne R. Premo 1U.S. Geological Survey, MS 963, Box 25046, Denver Federal Center, Denver, CO 80225, U.S.A. R. R. Loucks 2Research School of Earth Sciences, Australian National University, Mills Road, Canberra, ACT 0200 Australia Publisher: University of Wyoming Received: 08 Sep 1999 Revision Received: 17 Mar 2000 Accepted: 23 Mar 2000 First Online: 03 Mar 2017 Online ISSN: 1555-7340 Print ISSN: 1555-7332 UW Department of Geology and Geophysics Rocky Mountain Geology (2000) 35 (1): 51–70. https://doi.org/10.2113/35.1.51 Article history Received: 08 Sep 1999 Revision Received: 17 Mar 2000 Accepted: 23 Mar 2000 First Online: 03 Mar 2017 Cite View This Citation Add to Citation Manager Share Icon Share Facebook Twitter LinkedIn Email Permissions Search Site Citation Wayne R. Premo, R. R. Loucks; Age and Pb-Sr-Nd isotopic systematics of plutonic rocks from the Green Mountain magmatic arc, southeastern Wyoming : Isotopic characterization of a Paleoproterozoic island arc system. Rocky Mountain Geology 2000;; 35 (1): 51–70. doi: https://doi.org/10.2113/35.1.51 Download citation file: Ris (Zotero) Refmanager EasyBib Bookends Mendeley Papers EndNote RefWorks BibTex toolbar search Search Dropdown Menu toolbar search search input Search input auto suggest filter your search All ContentBy SocietyRocky Mountain Geology Search Advanced Search Abstract Three new U-Pb zircon ages and the Pb-Sr-Nd isotopic systematics of 24 whole-rock samples from mainly plutonic rocks of the Sierra Madre and Medicine Bow Mountains near the Colorado-Wyoming border help establish the Green Mountain magmatic arc as a Paleoproterozoic, variably eroded, island arc terrane. The Green Mountain magmatic arc, a terrane composed of variably metamorphosed volcanic and volcaniclastic rocks, minor metasedimentary rocks, high-grade gneisses, and plutons ranging from gabbro to granodiorite, was formed between ca. 1792 and 1744 Ma. It is the northernmost and oldest part of the Colorado province and is separated from Archean rocks to the north by the east-west-trending Cheyenne belt.New U-Pb zircon ages were determined for two dioritic samples of the Mullen Creek complex (1778 ±2 and 1778 ±17 Ma; an ultramafic/mafic layered intrusion) and for a sample of the Rambler granite (1771 ±3.4 Ma); both units are exposed in the Medicine Bow Mountains. A Sm-Nd internal isochron age of 1750 ±24 Ma (ϵNdi = + 3.8) was determined that is within error of the Sm-Nd whole-rock isochron age for the entire Lake Owen sample database (1775 ±45 Ma). Initial Nd signatures (+ 3.3 to 4.8) indicate that the bulk of the arc rocks was derived from a depleted mantle source at 1.78 Ga. Although the Rb-Sr systematics appear disturbed, data from extremely low Rb/Sr, non-hydrous, ultramafic layered units indicate an initial 87Sr/86Sr value of 0.7024. The range of initial Sr isotopic values for these rocks is elevated relative to depleted mantle sources at 1.78 Ga, an isotopic distinction of modern primitive oceanic island arc systems. The U-Pb data on the same mafic rock samples are consistent with the other isotopic results. The values define average initial Pb values of 206Pb/204Pb = 15.7 and 207Pb/204Pb = 15.3, indicative of a depleted mantle source at 1.78 Ga.Felsic plutonic arc rocks exhibit disturbed Pb and Sr isotopic behavior. They are characterized by the same depleted mantle signature with initial ϵNd values of ∼2.9–4.4, however, indicating little crustal contamination of source magmas for granites and precluding their derivation by subduction of Archean crustal components during collisional accretion of the arc. You do not have access to this content, please speak to your institutional administrator if you feel you should have access.
Volcanic rocks near Yampa, Colorado (USA), represent one of several small late Miocene to Quaternary alkaline volcanic fields along the northeast margin of the Colorado Plateau. Basanite, trachybasalt, and basalt collected from six sites within the Yampa volcanic field were investigated to assess correlations with late Cenozoic extension and Rio Grande rifting. In this paper we report major and trace element rock and mineral compositions and Ar, Sr, Nd, and Pb isotope data for these volcanic rocks. High-precision 40Ar/39Ar geochronology indicates westward migration of volcanism within the Yampa volcanic field between 6 and 4.5 Ma, and the Sr, Nd, and Pb isotope values are consistent with a primary source in the Proterozoic subcontinental lithospheric mantle. Relict olivine phenocrysts have Mg- and Ni-rich cores, whereas unmelted clinopyroxene cores are Na and Si enriched with finely banded Ca-, Mg-, Al-, and Ti-enriched rims, thus tracing their crystallization history from a lithospheric mantle source region to one in contact with melt prior to eruption. A regional synthesis of Neogene and younger volcanism within the Rio Grande rift corridor, from northern New Mexico to southern Wyoming, supports a systematic overall southwest migration of alkaline volcanism. We interpret this Neogene to Quaternary migration of volcanism toward the northeast margin of the Colorado Plateau to record passage of melt through subvertical zones within the lithosphere weakened by late Cenozoic extension. If the locus of Quaternary alkaline magmatism defines the current location of the Rio Grande rift, it includes the Leucite Hills, Wyoming. We suggest that alkaline volcanism in the incipient northern Rio Grande rift, north of Leadville, Colorado, represents melting of the subcontinental lithospheric mantle in response to transient infiltration of asthenospheric mantle into deep, subvertical zones of dilational crustal weakness developed during late Cenozoic extension that have been migrating toward, and subparallel to, the northeast margin of the Colorado Plateau since the middle Miocene. Quaternary volcanism within this northern Rio Grande rift corridor is evidence that the rift is continuing to evolve.
Recent mapping and geochronologic studies for the eastern half of the Vail 1:100,000-scale quadrangle have significantly improved our understanding of (1) Paleoproterozoic history of the basement rocks of the Gore Range and Williams Fork Mountains (western margin of the Front Range), (2) the Late Paleozoic history of the Gore fault system, (3) Laramide contractional tectonism, including deformation along the Gore fault and Williams Range thrust, (4) Oligocene and younger extensional history of the Blue River half graben (The northern extent of the Rio Grande rift), and (5) late Neogene and Quaternary surficial history. The recently active Gilman mining district, a major producer of zinc and lead, is in the southwestern corner of the map area. Marine sediments and mafic to felsic volcanic rocks deposited between about 1,740 and 1,780 m.y. were generally metamorphosed to amphibolite grade and intruded and deformed by mostly calc-alkalic granitic rocks during an orogenic episode that lasted about 110 m.y. The distribution of well-studied Upper Cambrian to thick Upper Cretaceous platform sediments is now greatly improved, which allows a better definition of the late Paleozoic uplift, erosion, and flanking sedimentation of the ancestral Front Range. Detailed mapping has also better defined the geometry of Late Cretaceous to early Tertiary Laramide deformation along both the Gore fault system and Williams Range thrust, as well as increased understanding of the details of mostly Neogene extension along the Blue River normal fault system (the western margin of the Blue River half graben). Scarps along the latter fault system indicate movement may be as young as Holocene. Detailed mapping of surficial deposits has defined and described (1) six ages of terrace alluvium, (2) three general ages of landslides, (3) glacial and periglacial deposits, and (4) fan, pediment, talus, and debris-flow deposits. The map is intended as a database for a variety of land-use and scientific purposes, including (1) assessment of geologically stable building sites, (2) planning for road and highway construction, (3) assessment of groundwater resources, (4) assessment of mineral resources, (5) determining geologic-hazard potential (flooding, landslide, rockfall, and seismic risk), (6) evaluating the structure of the northern Rio Grande rift in the Blue River valley, (7) improvement in understanding of the sedimentary section, which spans the period from the Cambrian to the Holocene, and (8) new insights into the geologic history of the Proterozoic basement rocks, including a number of new radiometric dates.
Nine U-Pb zircon ages were determined on plutonic rocks sampled from surface outcrops and rock chips of drill core from boreholes within the greater Los Angeles Basin region. In addition, lead-strontium-neodymium (Pb-Sr-Nd) whole-rock isotopic data were obtained for eight of these samples. These results help to characterize the crystalline basement rocks hidden in the subsurface and provide information that bears on the tectonic history of the myriad of fault systems that have dissected the Los Angeles region over the past 15 m.y. Seven of the nine samples have U-Pb ages ranging from 115 to 103 Ma and whole-rock Pb-Sr-Nd isotopic characteristics that indicate the crystalline basement underneath the greater Los Angeles Basin region is mostly part of the Peninsular Ranges batholith. Furthermore, these data are interpreted as evidence for (1) the juxtaposition of mid-Cretaceous, northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges in the San Fernando Valley, probably along the Verdugo fault; (2) the juxtaposition of older northwestern Peninsular Ranges batholith rocks against younger northeastern Peninsular Ranges batholith rocks in the northern Puente Hills, implying transposition of northeastern Peninsular Ranges batholith rocks to the west along unrecognized faults beneath the Chino Basin; and (3) juxtaposition of northern Peninsular Ranges batholith plutonic rocks against Late Cretaceous plutonic rocks of the Transverse Ranges along the San Jose fault in the northern San Jose Hills at Ganesha Park. These mainly left-lateral strike-slip faults of the eastern part of the greater Los Angeles Basin region could be the result of block rotation within the adjacent orthogonal, right-lateral, Elsinore-Whittier fault zone to the west and the subparallel San Jacinto fault zone to the east. The San Andreas fault system is the larger, subparallel, driving force further to the east.
First posted March 27, 2018 For additional information, contact: Director, Geology, Geophysics, and Geochemistry Science CenterU.S. Geological SurveyBox 25046, MS 973Denver, CO 80225 The conterminous United States hosts numerous volumetrically significant and geographically dispersed granitoid intrusions that range in age from 1.50 to 1.32 billion years before present (Ga). Although previously referred to as A-type granites, most are better described as ferroan granites. These granitoid intrusions are distributed in the northern and central Rocky Mountains, the Southwest, the northern midcontinent, and a swath largely buried beneath Phanerozoic cover across the Great Plains and into the southern midcontinent. These intrusions, with ages that are bimodally distributed between about 1.455–1.405 Ga and 1.405–1.320 Ga, are dispersed nonsystematically with respect to age across their spatial extents. Globally, although A-type or ferroan granites are genetically associated with rare-metal deposits, most U.S. 1.4 Ga granitoid intrusions do not contain significant deposits. Exceptions are the light rare-earth element deposit at Mountain Pass, California, and the iron oxide-apatite and iron oxide-copper-gold deposits in southeast Missouri.Most of the U.S. 1.4 Ga granitoid intrusions are composed of hornblende ± biotite or biotite ± muscovite monzogranite, commonly with prominent alkali feldspar megacrysts; however, modal compositions vary widely. These intrusions include six of the eight commonly identified subtypes of ferroan granite: alkali-calcic and calc-alkalic peraluminous subtypes; alkalic, alkali-calcic, and calc-alkalic metaluminous subtypes; and the alkalic peralkaline subtype. The U.S. 1.4 Ga granitoid intrusions also include variants of these subtypes that have weakly magnesian compositions. Extreme large-ion lithophile element enrichments typical of ferroan granites elsewhere are absent among these intrusions. Chondrite-normalized rare-earth element patterns for these intrusions have modest negative slopes and moderately developed negative europium anomalies. Their radiogenic isotopic compositions are consistent with mixing involving primitive, mantle-derived components and evolved, crust-derived components.Each compositional subtype can be ascribed to a relatively unique petrogenetic history. The numerically dominant ferroan, peraluminous granites probably represent low-degree, relatively high-pressure partial melting of preexisting, crust-derived, intermediate-composition granitoids. The moderately numerous, weakly magnesian, peraluminous granites probably reflect similar partial melting but at a higher degree and in a lower pressure environment. In contrast, the ferroan but metaluminous granites may be the result of extensive differentiation of tholeiitic basalt. Finally, the peralkaline igneous rocks at Mountain Pass have compositions potentially derived by differentiation of alkali basalt. The varying alkalic character of each subtype probably reflects polybaric petrogenesis and the corresponding effect of diverse mineral stabilities on ultimate melt compositions. Mantle-derived mafic magma and variably assimilated partial melts of mainly juvenile Paleoproterozoic crustal components are required to generate the relatively low initial strontium (87Sr/86Sr) and distinctive neodymium isotope compositions characteristic of the U.S. 1.4 Ga granitoid intrusions. The characteristics of these intrusions are consistent with crustal melting in an extensional/decompressional, intracratonic setting that was triggered by mantle upwelling and emplacement of tholeiitic basaltic magma at or near the base of the crust. Composite magmas, formed by mingling and mixing mantle components with partial melts of Paleoproterozoic crust, produced variably homogenized storage reservoirs that continued polybaric evolution as intrusions lodged at various crustal depths.
The thermochronology for several suites of Mesozoic metamorphic and plutonic rocks collected throughout the northern Peninsular Ranges batholith (PRB) was studied as part of a collaborative isotopic study to further our understanding of the magmatic and tectonic history of southern California. These sample suites include: a traverse through the plutonic rocks across the northern PRB (N = 29), a traverse across a central structural and metamorphic transition zone of mainly metasedimentary rocks at Searl ridge (N = 20), plutonic samples from several drill cores (N = 7) and surface samples (N = 2) from the Los...