Hydrofracture systems are being increasingly recognized within subglacial to ice‐marginal settings and represent a visible expression of the passage of pressurized meltwater through these glacial environments. Such structures provide a clear record of the fluctuating hydrostatic pressure and of the resulting brittle fracturing of the host sediment/bedrock and the pene‐contemporaneous liquefaction and introduction of sediment‐fill. A detailed macro‐ and microstructural study of a hydrofracture system cutting D evonian sandstone bedrock exposed at the M eads of S t J ohn, near Inverness ( NE S cotland), has revealed that this complex multiphase system was active over a prolonged period and accommodated several phases of fluid flow. The main conduits that fed the hydrofracture system are located along bedding within the sandstone, with the site of the wider, steeply inclined to subvertical, transgressive linking sections being controlled by the contemporaneous development of high‐angle fractures and normal faults, the latter occurring in response to localized extension within the bedrock. A comparison with published engineering hydraulic fracturing data indicates that the various stages of sediment‐fill deposited during a flow event can be directly related to the fluctuation in overpressure during hydrofracturing. A model is proposed linking the evolution of this hydrofracture system to the retreat of the overlying Findhorn glacier. The results of this study also indicate that the development and repeated reactivation of subglacial hydrofracture systems can have a dramatic effect on the permeability of the bed, influencing the potential for overpressure build‐up within the subglacial hydrogeological system, and facilitating the migration of meltwater beneath glaciers and ice sheets.
A combination of conventional surveying and non-invasive techniques have been applied to characterising the geomorphology, soils and shallow substrates of a typical small catchment in the Southern Uplands in Scotland, in three dimensions. Integration of geospatial, geophysical and geotechnical data, in the resulting digital 3D model, enable the nature and extent of individual components of the landscape to be measured and their relationships at depth to interpreted and visualised. This type of baseline data is fundamental to understanding past, and monitoring and measuring the impacts of future environmental changes in environmentally sensitive areas.
<p>Short historical and even shorter instrumental records limit our perspective of earthquake maximum magnitude and recurrence, and thus are inadequate to fully characterize Earth&#8217;s complex and multiscale seismic behavior and its consequences. Examining prehistoric events preserved in the geological record is essential to reconstruct the long-term history of earthquakes and to deliver observational data that help to reduce uncertainties in seismic hazard assessment for long return periods. Motivated by the mission to fill the gap in long-term records of giant (Mw 9 class) earthquakes such as the Tohoku-Oki earthquake in 2011, International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology, was designed to test and further develop submarine paleoseismology in the Japan Trench.</p><p>Earthquake rupture propagation to the trench and sediment remobilization related to the 2011 Mw 9.0 Tohoku-Oki earthquake, and the respective structures and deposits are preserved in trench basins formed by flexural bending of the subducting Pacific Plate. These basins are ideal study areas for testing event deposits for earthquake triggering as they have poorly connected sediment transport pathways from the shelf and experience high sedimentation rates and low benthos activity (and thus high preservation potential) in the ultra-deep water hadal environment. Results from conventional coring covering the last ~1,500 y reveal good agreement between the sedimentary record and historical documents. Subbottom profile data are consistent with basin-fill successions of episodic muddy turbidite deposition and thus define clear targets for paleoseismologic investigations on longer timescales accessible only by deeper coring.</p><p>In 2021, IODP Expedition 386 successfully collected 29 Giant Piston cores at 15 sites (1 to 3 holes each; total core recovery 831 meters), recovering 20 to 40-meter-long, continuous, upper Pleistocene to Holocene stratigraphic successions of 11 individual trench-fill basins along an axis-parallel transect from 36&#176;N &#8211; 40.4&#176;N, at water depth between 7445-8023 m below sea level. The cores are currently being examined by multimethod applications to characterize and date event deposits for which the detailed stratigraphic expressions and spatiotemporal distribution will be analyzed for proxy evidence of giant versus smaller earthquakes versus other driving mechanisms. Initial preliminary results presented in this EGU presentation reveal event-stratigraphic successions comprising several 10s of potentially giant-earthquake related event beds, revealing a fascinating record that will unravel the earthquake history of the different along-strike segments, that is 10&#8211;100 times longer than currently available information. The data set will enable a statistically robust assessment of the recurrence patterns of giant earthquakes as input for improved probabilistic seismic hazard assessment and advanced understanding of earthquake-induced geohazards globally.&#160;</p><p>&#160;</p>
The cover image is based on the Research Article Subglacial drumlins and englacial fractures at the surge-type glacier, Múlajökull, Iceland by Andrew Finlayson et al., https://doi.org/10.1002/esp.4485. Image Credit: Ívar Örn Benediktsson.
The International Ocean Discovery Program (IODP) Expedition 386, Japan Trench Paleoseismology, represents the first utilization of giant piston coring (GPC) within scientific ocean research drilling. This allowed for a Mission Specific Platform (MSP) multi-site, multi-hole, shallow subsurface coring in an ultra-deep water subduction zone trench. The primary objective of the expedition was to investigate the concept of submarine paleoseismology in the Japan Trench, which involves studying long-term records of deposits in the deep sea that can provide insights into past earthquake events. In this paper, we compile and interpret initial shipboard data and results to (1) establish first-order event stratigraphic correlation of thick event beds (> 50 cm in thickness) between sites, (2) test previously published event-stratigraphic predictions of earthquake-related event deposits as proposed based on high-resolution hydro-acoustic subbottom profiler (SBP) data, and (3) derive SBP-scale event deposits age estimates to (4) discuss the advantages and limitations of giant piston coring for scientific drilling operations and the potential of new event stratigraphy results for advancing submarine paleoseismology. The findings of the study identified a total of 77 SBP-scale event beds across 15 sites along a trench-parallel transect spanning over 600 km. These event beds exhibit clear expressions in SBP data, with approximately 49 % matching precisely with SBP units previously identified by Kioka et al. (2019a). For the remaining 51 % of SBP-scale event beds, thin, acoustically-transparent bodies were observed between high-amplitude horizons, for which SBP-based seismic interpretation alone would not be definitive. Consequently, the study concluded that the SBP-scale event-stratigraphy observed in IODP 386 cores validates the event-bed mapping conducted by Kioka et al. (2019a) and improves SBP interpretation for event beds in the 0.5 to 1 m thickness range. The initial age constraints obtained from shipboard radiolarian biostratigraphy enable us to provide rough estimates of event ages by linearly interpolating between previously dated events occurring less than 2000 years ago and a datum around 11,000 years ago reported in four boreholes from trench basins in the Southern, Central, and Northern Japan Trench. Inter-site stratigraphic correlation reveals distinct SBP-scale event stratigraphies for the trench segments located to the north and south of the structurally complex "boundary area" at approximately 39.3–39.4°N, which is hypothesized to potentially act as a persistent rupture barrier for megathrust earthquakes. We observe more frequent but thinner event deposits in the Southern and Central Japan Trench, and fewer but thicker event beds in the Northern Japan Trench. This spatial variation may be related to the different seismogenic behavior of the various asperities along the Japan Trench megathrust and/or to differences in the response of slope sediments to earthquake shaking. However, here-presented investigations at the SBP-scale level are deemed too simplistic for robust application of the "submarine paleoseismology" approach. The extensive and high-quality dataset from IODP GPC, coupled with the encouraging initial correlation results presented here, leads us to hypothesize that further detailed studies can identify and characterize event deposition dynamics at the micro-facies level, refine sediment provenance, and constrain precise event ages necessary for evaluating synchronicity in paleoseismological interpretation. These studies will also enable robust exploration of along-strike correlations or variations, facilitating the extraction of paleo-earthquake signals from Japan Trench event stratigraphies.