An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
The rift-related magmas of the Proterozoic Gardar Igneous Province were emplaced across the contact between the South Greenland Archaean craton and the Palaeoproterozoic Ketilidian mobile belt. It has been suggested that the geochemistry of Gardar intrusive rocks in the two areas varies across the craton margin and that this reflects a lithospheric control. However, comparison of the geochemical and isotopic signatures of basic and ultrabasic dykes from across the area shows that there is no systematic variation related to the age of the country rock. All the Gardar basic rocks are inferred to have been derived from the mantle, with relatively little crustal contamination. We suggest that the lithospheric mantle beneath the Gardar Province was enriched by slab-derived fluids during the Ketilidian orogeny ( c . 1800 Ma). Subsequent melting of this mantle source was promoted during Gardar rifting when volatile-rich, small-degree melts from the asthenosphere were introduced into the lithospheric mantle, forming enriched metasomites. Ultrabasic lamprophyre dykes in the Gardar Province represent melts derived largely from these metasomites, whereas basaltic magmas were formed by larger-scale melting of the lithospheric mantle, inheriting a subduction-related signature. There is no evidence that the Gardar magmas were derived from a highly enriched lithospheric keel that had existed since craton formation.
Rare earth elements (REE) are essential raw materials used in modern technology. Current production of REE is dominated by hard-rock mining, particularly in China, which typically requires high energy input. In order to expand the resource base of the REE, it is important to determine what alternative sources exist. REE placers have been known for many years, and require less energy than mining of hard rock, but the REE ore minerals are typically derived from eroded granitic rocks and are commonly radioactive. Other types of REE placers, such as those derived from volcanic activity, are rare. The Aksu Diamas heavy mineral placer in Turkey has been assessed for potential REE extraction as a by-product of magnetite production, but its genesis was not previously well understood. REE at Aksu Diamas are hosted in an array of mineral phases, including apatite, chevkinite group minerals (CGM), monazite, allanite and britholite, which are concentrated in lenses and channels in unconsolidated Quaternary sands. Fingerprinting of pyroxene, CGM, magnetite and zircon have identified the source of the placer as the nearby Gölcük alkaline volcanic complex, which has a history of eruption throughout the Plio-Quaternary. Heavy minerals were eroded from tephra and reworked into basinal sediments. This type of deposit may represent a potential resource of REE in other areas of alkaline volcanism.
An abstract is not available for this content so a preview has been provided. As you have access to this content, a full PDF is available via the ‘Save PDF’ action button.
Abstract Carbonatite magmas are considered to be ultimately derived from mantle sources, which may include lithospheric and asthenospheric reservoirs. Isotopic studies of carbonatite magmatism around the globe have typically suggested that more than one source needs to be invoked for generation of the parental melts to carbonatites, often involving the interaction of asthenosphere and lithosphere. In the rift-related, Proterozoic Gardar Igneous Province of SW Greenland, carbonatite occurs as dykes within the Igaliko Nepheline Syenite Complex, as eruptive rocks and diatremes at Qassiarsuk, as a late plug associated with nepheline syenite at Grønnedal-Íka, and as small bodies associated with ultramafic lamprophyre dykes. The well-known cryolite deposit at Ivittuut was also rich in magmatic carbonate. The carbonatites are derived from the mantle with relatively little crustal contamination, and therefore should provide important information about the mantle sources of Gardar magmas. In particular, they are found intruded both into Archaean and Proterozoic crust, and hence provide a test for the involvement of lithospheric mantle. A synthesis of new and previously published major and trace element, Sr, Nd, C and O isotope data for carbonatites and associated lamprophyres from the Gardar Province is presented. The majority of Gardar carbonatites and lamprophyres have consistent geochemical and isotopic signatures that are similar to those typically found in ocean island basalts. The geochemical characteristics of the two suites of magmas are similar enough to suggest that they were derived from the same mantle source. C and O isotope data are also consistent with a mantle derivation for the carbonatite magmas, and support the theory of a cogenetic origin for the carbonatites and the lamprophyres. The differences between the carbonatites and lamprophyres are considered to represent differing degrees of partial melting of a similar source.We suggest that the ultimate source of these magmas is the asthenospheric mantle, since there is no geochemical or isotopic evidence for their having been derived directly from ancient, enriched sub-continental lithospheric mantle. However, it is likely that the magmas actually formed through a two-stage process, with small-degree volatile-rich partial melts rising from the asthenospheric mantle and being ‘frozen in’ as metasomites, which were then rapidly remobilized during Gardar rifting.