Urban thermal environment should be analyzed by considering the dynamic structural changes as cities grow both horizontally and vertically. Local Climate Zone (LCZ) scheme can describe built-up areas in detail, mainly based on density and height; however, the low overall accuracy of LCZ urban classes (OAurb) remains a notable limitation that requires improvement. This study proposes a hybrid analytical method considering bidirectional urban expansion and low OAurb. Temporal LCZ maps were constructed using a convolutional neural network to observe the dynamic urban growth between 2004 and 2021 in Suwon, South Korea. Unlike previous LCZ mapping studies, we utilized the additional information provided by deep learning through softmax-based probability maps. Random forest-based downscaling models were developed by combining various auxiliary variables related to the Land Surface Temperature (LST) to observe the detailed surface energy flux. A filtering method was then employed by eliminating areas where LCZs were identified with a low confidence level using extracted probability maps. Finally, thermal variability was investigated by overlaying the filtered LCZ maps and the corresponding LST. The produced LCZ maps and spatially downscaled LSTs accurately depicted dynamic urban form changes, with the LCZ maps exhibiting an average overall accuracy of approximately 90% and downscaled LSTs showing an average coefficient of determination of ∼ 0.9 and a root mean square error of 0.7 °C. Thermal variability occurring due to structural transitions varied in magnitude depending on the height and density of the buildings, while exhibiting a maximum and minimum value of 2.8 °C and − 2.2 °C, respectively. By selecting reliably classified areas, the proposed filtering method produced more rational results than the original non-filtering method, resulting in higher variability from − 0.4 °C to 0.6 °C.
Even though deicing or airframe coating technologies continue to develop, aircraft icing is still one of the critical threats to aviation. While the detection of potential icing clouds has been conducted using geostationary satellite data in the US and Europe, there is not yet a robust model that detects potential icing areas in East Asia. In this study, we proposed machine-learning-based icing detection models using data from two geostationary satellites—the Communication, Ocean, and Meteorological Satellite (COMS) Meteorological Imager (MI) and the Himawari-8 Advanced Himawari Imager (AHI)—over Northeast Asia. Two machine learning techniques—random forest (RF) and multinomial log-linear (MLL) models—were evaluated with quality-controlled pilot reports (PIREPs) as the reference data. The machine-learning-based models were compared to the existing models through five-fold cross-validation. The RF model for COMS MI produced the best performance, resulting in a mean probability of detection (POD) of 81.8%, a mean overall accuracy (OA) of 82.1%, and mean true skill statistics (TSS) of 64.0%. One of the existing models, flight icing threat (FIT), produced relatively poor performance, providing a mean POD of 36.4%, a mean OA of 61.0, and a mean TSS of 9.7%. The Himawari-8 based models also produced performance comparable to the COMS models. However, it should be noted that very limited PIREP reference data were available especially for the Himawari-8 models, which requires further evaluation in the future with more reference data. The spatio-temporal patterns of the icing areas detected using the developed models were also visually examined using time-series satellite data.
This study introduces change detection based on object/neighbourhood correlation image analysis and image segmentation techniques. The correlation image analysis is based on the fact that pairs of brightness values from the same geographic area (e.g. an object) between bi‐temporal image datasets tend to be highly correlated when little change occurres, and uncorrelated when change occurs. Five different change detection methods were investigated to determine how new contextual features could improve change classification results, and if an object‐based approach could improve change classification when compared with per‐pixel analysis. The five methods examined include (1) object‐based change classification incorporating object correlation images (OCIs), (2) object‐based change classification incorporating neighbourhood correlation images (NCIs), (3) object‐based change classification without contextual features, (4) per‐pixel change classification incorporating NCIs, and (5) traditional per‐pixel change classification using only bi‐temporal image data. Two different classification algorithms (i.e. a machine‐learning decision tree and nearest‐neighbour) were also investigated. Comparison between the OCI and the NCI variables was evaluated. Object‐based change classifications incorporating the OCIs or the NCIs produced more accurate change detection classes (Kappa approximated 90%) than other change detection results (Kappa ranged from 80 to 85%).
The use of land surface temperature and vertical temperature profile data from Moderate Resolution Imaging Spectroradiometer (MODIS), to estimate high spatial resolution daily and monthly maximum and minimum 2 m above ground level (AGL) air temperatures for regions with limited in situ data was investigated. A diurnal air temperature change model was proposed to consider the differences between the MODIS overpass times and the times of daily maximum and minimum temperatures, resulting in the improvements of the estimation in terms of error values, especially for minimum air temperature. Both land surface temperature and vertical temperature profile data produced relatively high coefficient of determination values and small Mean Absolute Error (MAE) and Root Mean Square Error (RMSE) values for air temperature estimation. The correction of the estimates using two gridded datasets, National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis and Climate Research Unit (CRU), was performed and the errors were reduced, especially for maximum air temperature. The correction of daily and monthly air temperature estimates using the NCEP/NCAR reanalysis data, however, still produced relatively large error values compared to existing studies, while the correction of monthly air temperature estimates using the CRU data significantly reduced the errors; the MAE values for estimating monthly maximum air temperature range between 1.73 °C and 1.86 °C. Uncorrected land surface temperature generally performed better for estimating monthly minimum air temperature and the MAE values range from 1.18 °C to 1.89 °C. The suggested methodology on a monthly time scale may be applied in many data sparse areas to be used for regional environmental and agricultural studies that require high spatial resolution air temperature data.