The cichlid fishes of Lake Malawi are famously diverse. However, phylogenetic and population genetic studies of their history have been difficult because of the great amount of genetic variation that is shared between species. We apply a recently developed method for fitting the “isolation with migration” divergence model to a data set of specially designed compound loci to develop portraits of cichlid species divergence. Outgroup sequences from a cichlid from Lake Tanganyika permit model parameter estimates in units of years and effective population sizes. Estimated speciation times range from 1,000 to 17,000 years for species in the genus Tropheops . These exceptionally recent dates suggest that Malawi cichlids as a group experience a very active and dynamic diversification process. Current effective population size estimates range form 2,000 to near 40,000, and to >120,000 for estimates of ancestral population sizes. It appears that very recent speciation and gene flow are among the reasons why it has been difficult to discern the phylogenetic history of Malawi cichlids.
Species inhabiting deep-sea hydrothermal vents are strongly influenced by the geological setting, as it provides the chemical-rich fluids supporting the food web, creates the patchwork of seafloor habitat, and generates catastrophic disturbances that can eradicate entire communities. The patches of vent habitat host a network of communities (a metacommunity) connected by dispersal of planktonic larvae. The dynamics of the metacommunity are influenced not only by birth rates, death rates and interactions of populations at the local site, but also by regional influences on dispersal from different sites. The connections to other communities provide a mechanism for dynamics at a local site to affect features of the regional biota. In this paper, we explore the challenges and potential benefits of applying metacommunity theory to vent communities, with a particular focus on effects of disturbance. We synthesize field observations to inform models and identify data gaps that need to be addressed to answer key questions including: 1) what is the influence of the magnitude and rate of disturbance on ecological attributes such as time to extinction or resilience in a metacommunity; 2) what interactions between local and regional processes control species diversity, and 3) which communities are 'hot spots' of key ecological significance. We conclude by assessing our ability to evaluate resilience of vent metacommunities to human disturbance (e.g., deep-sea mining). Although the resilience of a few highly disturbed vent systems in the eastern Pacific has been quantified, these values cannot be generalized to remote locales in the western Pacific or mid Atlantic where disturbance rates are different and information on local controls is missing.
The files are supplementary data of the research article "Connectivity and divergence of symbiotic bacteria of deep-sea hydrothermal vent mussels in relation to the structure and dynamics of mid-ocean ridges." The data include the files used and resulted from the article: The input files formatted for each software, command lines, and output files. Please refer to the "file_info.txt" in each folder.
The files are supplementary data of the research article "Connectivity and divergence of symbiotic bacteria of deep-sea hydrothermal vent mussels in relation to the structure and dynamics of mid-ocean ridges." The data include the files used and resulted from the article: The input files formatted for each software, command lines, and output files. Please refer to the "file_info.txt" in each folder.
Batillaridae is a common gastropod family that occurs abundantly in the shallow coastal zone of the intertidal mudflats of the northwest Pacific Ocean, Australasia, and North America. In this family, Batillaria attramentaria is known for its biological invasion and colonization in estuarine and intertidal zones. It can endure and adapt the harsh intertidal conditions such as frequent temperature alteration, salinity, and air exposure. Therefore, we sequenced and assembled this Korean batillariid genome to get insight into its intertidal adaptive features. Approximately 53 Gb of DNA sequences were generated, and 863 scaffolds were assembled into a draft genome of 0.715 Gb with 97.1% BUSCO completeness value. A total of 40,596 genes were predicted. We estimated that B. attramentaria and Conus consors diverged about 230 million years ago (MYA) based on the phylogenetic analysis of closely related gastropod species. This genome study sets the footstep for genomics studies among native and introduced Batillaria populations and the Batillaridae family members.
The complete mitochondrial genome of Ridgeia piscesae (Polychaeta, Siboglinidae), one of the dominant taxa in deep-sea hydrothermal vents, is reported here for the first time. The R. piscesae mitogenome is 15,002 bp in total length and includes 13 protein-coding gene sequences, small and large rRNA sequences and 22 tRNA sequences. All genes are encoded on the heavy strand. The mitochondrial genomes of R. piscesae and other six polychaete species have a conserved gene order.
The data include input data used for molecular analyses in the study "Geographical subdivision of Alviniconcha snail populations in the Indian Ocean hydrothermal vent regions."
The mytilid mussel Bathymodiolus thermophilus lives in the deep-sea hydrothermal vent regions due to its symbiotic relationship with chemosynthetic Gammaproteobacteria. It is well established that symbionts in this mussel gill bacteriocytes utilize the vent environment’s hydrogen sulfide, methane, and hydrogen gases. However, some symbiont genomes of mussels either possess or lack genes for hydrogen metabolism within the single-ribotype population and host mussel species level. Here, we observed a unique hydrogenase operon consisting of additional H2-sensing hydrogenase subunits from a complete genome of B. thermophilus symbiont sampled from an individual mussel from the East Pacific Rise (EPR9N). Also, we found methylated regions sparsely distributed throughout the EPR9N genome, mainly in the transposases regions and densely present in the rRNA gene regions. CRISPR diversity analysis confirmed this genome originated from a single symbiont strain. Variation in genome size, gene content, and genome re-arrangements across individual hosts suggest multiple symbiont strains can associate with B. thermophilus. Furthermore, the unique genomic features of the EPR9N symbiont indicate that the acquisition of such a locally adapted symbiotic strain may be an effective mechanism for successfully colonizing diverse chemosynthetic environments across the global oceans by host mussels.
Chemolithoautotrophic primary production sustains dense invertebrate communities at deep-sea hydrothermal vents and hydrocarbon seeps. Symbiotic bacteria that oxidize dissolved sulfur, methane, and hydrogen gases nourish bathymodiolin mussels that thrive in these environments worldwide. The mussel symbionts are newly acquired in each generation via infection by free-living forms. This study examined geographical subdivision of the thiotrophic endosymbionts hosted by Bathymodiolus mussels living along the eastern Pacific hydrothermal vents. High-throughput sequencing data of 16S ribosomal RNA encoding gene and fragments of six protein-coding genes of symbionts were examined in the samples collected from nine vent localities at the East Pacific Rise, Galápagos Rift, and Pacific-Antarctic Ridge. Both of the parapatric sister-species, B. thermophilus and B. antarcticus, hosted the same numerically dominant phylotype of thiotrophic Gammaproteobacteria. However, sequences from six protein-coding genes revealed highly divergent symbiont lineages living north and south of the Easter Microplate and hosted by these two Bathymodiolus mussel species. High heterogeneity of symbiont haplotypes among host individuals sampled from the same location suggested that stochasticity associated with initial infections was amplified as symbionts proliferated within the host individuals. The mussel species presently contact one another and hybridize along the Easter Microplate, but the northern and southern symbionts appear to be completely isolated. Vicariance associated with orogeny of the Easter Microplate region, 2.5–5.3 million years ago, may have initiated isolation of the symbiont and host populations. Estimates of synonymous substitution rates for the protein-coding bacterial genes examined in this study were 0.77–1.62%/nucleotide/million years. Our present study reports the most comprehensive population genetic analyses of the chemosynthetic endosymbiotic bacteria based on high-throughput genetic data and extensive geographical sampling to date, and demonstrates the role of the geographical features, the Easter Microplate and geographical distance, in the intraspecific divergence of this bacterial species along the mid-ocean ridge axes in the eastern Pacific. Altogether, our results provide insights into extrinsic and intrinsic factors affecting the dispersal and evolution of chemosynthetic symbiotic partners in the hydrothermal vents along the eastern Pacific Ocean.