The thermal structure of subduction zones exerts a major influence on deep-seated mechanical and chemical processes controlling arc magmatism, seismicity, and global element cycles. Accretionary complexes exposed inland may comprise tectonic blocks with contrasting pressure–temperature (P–T) histories, making it possible to investigate the dynamics and thermal evolution of former subduction interfaces. With this aim, we present new Lu–Hf geochronological results for mafic rocks of the Halilbağı Complex (Anatolia) that evolved along different thermal gradients. Samples include a lawsonite–epidote blueschist, a lawsonite–epidote eclogite, and an epidote eclogite (all with counter-clockwise P–T paths), a prograde lawsonite blueschist with a "hairpin"-type P–T path, and a garnet amphibolite from the overlying sub-ophiolitic metamorphic sole. Equilibrium phase diagrams suggest that the garnet amphibolite formed at ∼0.6–0.7 GPa and 800–850 °C, whereas the prograde lawsonite blueschist records burial from 2.1 GPa and 420 °C to 2.6 GPa and 520 °C. Well-defined Lu–Hf isochrons were obtained for the epidote eclogite (92.38 ± 0.22 Ma) and the lawsonite–epidote blueschist (90.19 ± 0.54 Ma), suggesting rapid garnet growth. The lawsonite–epidote eclogite (87.30 ± 0.39 Ma) and the prograde lawsonite blueschist (ca. 86 Ma) are younger, whereas the garnet amphibolite (104.5 ± 3.5 Ma) is older. Our data reveal a consistent trend of progressively decreasing geothermal gradient from granulite-facies conditions at ∼104 Ma to the epidote-eclogite facies around 92 Ma, and the lawsonite blueschist-facies between 90 Ma and 86 Ma. Three Lu–Hf garnet dates (between 92 Ma and 87 Ma) weighted toward the growth of post-peak rims (as indicated by Lu distribution in garnet) suggest that the HP/LT rocks were exhumed continuously and not episodically. We infer that HP/LT metamorphic rocks within the Halilbağı Complex were subjected to continuous return flow, with "warm" rocks being exhumed during the tectonic burial of "cold" ones. Our results, combined with regional geological constraints, allow us to speculate that subduction started at a transform fault near a mid-oceanic spreading centre. Following its formation, this ancient subduction interface evolved thermally over more than 15 Myr, most likely as a result of heat dissipation rather than crustal underplating.
Abstract Ancient evaporite deposits are geological archives of depositional environments characterized by a long‐term negative precipitation balance and bear evidence for global ocean element mass balance calculations. Here, Cretaceous selenite pseudomorphs from western Anatolia (‘Rosetta Marble’) — characterized by their exceptional morphological preservation — and their ‘marine’ geochemical signatures are described and interpreted in a process‐oriented context. These rocks recorded Late Cretaceous high‐pressure/low‐temperature, subduction‐related metamorphism with peak conditions of 1·0 to 1·2 GP a and 300 to 400°C. Metre‐scale, rock‐forming radiating rods, now present as fibrous calcite marble, clearly point to selenitic gypsum as the precursor mineral. Stratigraphic successions are recorded along a reconstructed proximal to distal transect. The cyclical alternation of selenite beds and radiolarian ribbon‐bedded cherts in the distal portions are interpreted as a two type of seawater system. During arid intervals, shallow marine brines cascaded downward into basinal settings and induced precipitation. During more humid times, upwelling‐induced radiolarian blooms caused the deposition of radiolarite facies. Interestingly, there is no comparable depositional setting known from the Cenozoic world. Meta‐selenite geochemical data ( δ 13 C, δ 18 O and 87 Sr/ 86 Sr) plot within the range of reconstructed middle Cretaceous seawater signatures. Possible sources for the 13 C‐enriched (mean 2·2‰) values include methanogenesis, gas hydrates and cold seep fluid exhalation. Spatially resolved component‐specific analysis of a rock slab displays isotopic variances between meta‐selenite crystals (mean δ 13 C 2·2‰) and host matrix (mean δ 13 C 1·3‰). The Cretaceous evaporite‐pseudomorphs of Anatolia represent a basin wide event coeval with the Aptian evaporites of the Proto‐Atlantic and the pseudomorphs share many attributes, including lateral distribution of 600 km and stratigraphic thickness of 1·5 to 2·0 km, with the evaporites formed during the younger Messinian salinity crisis. The Rosetta Marble of Anatolia may represent the best‐preserved selenite pseudomorphs worldwide and have a clear potential to act as a template for the study of meta‐selenite in deep time.
Rosetta Marble was defined in SW Anatolia as 3D-radiating textures of dm-to-m-long calcite rods in the HP/LT metamorphosed Mid-Cretaceous pelagic carbonate sequence of the Oren Unit. Rosetta Marble in the type locality are interbedded with meta-chert beds, and may constitute entire carbonate beds. Rare aragonite relicts and Sr-rich, fibrous calcite pseudomorphs after aragonite witness the HP metamorphic imprint of this sequence during the closure of a Neotethyan oceanic domain during latest Cretaceous-Palaeocene times. We investigated the Rosetta Marble of the Oren Unit, as well as other known and newly found localities in the Tavsanli and Afyon zones, and the Alanya Massif and Malatya area, to decipher the metamorphic, diagenetic and sedimentologic significance of these uncommon textures. Based on field, petrographic and geochemical investigations, we document a wide variety of Rosetta-type textures. A striking resemblance with well-known gypsum morphologies (e.g. shallow-tail, palm-tree textures) leads us to argue that Rosetta Marble was initially composed of giant gypsum crystals (selenite). The absence of anhydrite relicts of pseudomorphs indicate that gypsum transformed into calcite soon after the deposition by the mean of a sulphate reduction reaction. The gypsum-to-calcite transformation requires that organic matter intervened as a reactant phase. Mid Cretaceous oceanic domains in the Tethyan realm are characterised by overall anoxic conditions that allowed the preservation of organic material. Rosetta Marble exposures are widely distributed over 600 km along the Neotethyan suture zone. During deepening of the Neotethyan ocean in Mid Cretaceous times, basin-wide and cyclic sedimentation of gypsum and radiolarite occurred. The origin of high-salinity waters needed for gypsum precipitation was located at shelf levels. Density and gravity effects forced the brines to cascade downwards into the deep ocean. Favorable climatic conditions trigger the formation of massive evaporates: hot temperatures during Aptian times, low oceanic circulation and a semi-closed character of the basin. The findings of massive selenite pseudomorphs located in a pelagic sequence have major impact on paleo- geographic reconstruction of Neotethyan basins in the Eastern Mediterranean during Cretaceous times.