Abstract. Bioaerosols are usually defined as aerosols arising from biological systems such as bacteria, fungi, and viruses. They play an important role in atmospheric physical and chemical processes including ice nucleation and cloud condensation. As such, their dispersion affects not only public health but also regional climate. Lidar is an effective technique for aerosol detection and pollution monitoring. It is also used to profile the vertical distribution of wind vectors. In this paper, a coherent Doppler wind lidar (CDWL) is deployed for aerosol and wind detection in Hefei, China, from 11 to 20 March in 2020. A wideband integrated bioaerosol sensor (WIBS) is used to monitor variations in local fluorescent bioaerosols. Three aerosol transport events are captured. The WIBS data show that, during these transport events, several types of fluorescent aerosol particles exhibit abnormal increases in their concentration, number fractions to total particles, and number fractions to whole fluorescent aerosols. These increases are attributed to external fluorescent bioaerosols instead of local bioaerosols. Based on the HYbrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) backward trajectory model and the characteristics of external aerosols in WIBS, their possible sources, transport paths, and components are discussed. The results prove the influence of external aerosol transport on local high particulate matter (PM) pollution and fluorescent aerosol particle composition. The combination of WIBS and CDWL expands the aerosol monitoring parameters and provides a potential method for real-time monitoring of fluorescent biological aerosol transport events. In addition, it also helps to understand the relationships between atmospheric phenomena at high altitudes like virga and the variation of surface bioaerosol. It contributes to the further understanding of long-range bioaerosol transport, the roles of bioaerosols in atmospheric processes, and in aerosol–cloud–precipitation interactions.
Thermospheric composition (O/N2 ratio) is well known to have a great impact on the variation of daytime ionospheric electron density. This study aims to investigate the local time, seasonal, and solar cycle variations of the O/N2 longitudinal pattern in both hemispheres during daytime in solstices. The O/N2 data used are from TIMED/Global Ultraviolet Imager observations made over a solar cycle for geomagnetically quiet conditions. The main findings are as follows: (1) The O/N2 longitudinal patterns are generally similar during 10:00–14:00 LT and between solar minimum and maximum, although the O/N2 values change with local time and solar cycle. (2) The winter O/N2 subauroral enhancement is unexpectedly smaller in the longitudes where the magnetic pole is (near-pole longitudes), rather than in the longitudes far from the magnetic pole, especially during solar maximum, and consequently, the longitudinal pattern of O/N2 depends on latitude in local winter. (3) The winter O/N2 subauroral enhancement generally moves to more poleward latitudes during solar maximum, as compared to solar minimum. (4) At higher midlatitudes (~45°–60°N and ~40°–50°S in geographic latitudes) in solar minimum, the winter-to-summer ratio of O/N2 in each hemisphere has an obvious minimum in near-pole longitudes. This minimum becomes more evident during solar maximum. The National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model simulations indicate that in the winter hemisphere, the unexpected O/N2 longitudinal pattern in higher midlatitudes is mainly associated with high-latitude Joule heating under the impact from ion convection and auroral precipitation.
Abstract The quasi 2 day wave (QTDW) observed during 2007 austral summer period is well reproduced in an reanalysis produced by the data assimilation version of the Whole Atmosphere Community Climate Model (WACCM + Data Assimilation Research Testbed) developed at National Center for Atmospheric Research (NCAR). It is found that the QTDW peaked 3 times from January to February but with different zonal wave numbers. Diagnostic analysis shows that the mean flow instabilities, refractive index, and critical layers of QTDWs are fundamental for their propagation and amplification, and thus, the temporal variations of the background wind are responsible for the different wave number structures at different times. The westward propagating wave number 2 mode (W2) grew and maximized in the first half of January, when the mean flow instabilities related to the summer easterly jet were enclosed by the critical layers of the westward propagating wave number 3 (W3) and wave number 4 (W4) modes. This prevented W3 and W4 from approaching and extracting energy from the unstable region. The W2 decayed rapidly thereafter due to the recession of critical layer and thus the lack of additional amplification by the mean flow instability. The W3 peaked in late January, when the instabilities were still encircled by the critical layer of W4. The attenuation of W3 afterward was also due to the disappearance of critical layer and thus the lack of overreflection. Finally, the W4 peaked in late February when both the instability and critical layer were appropriate.
Abstract. In this research, we reveal the inter-connection between lightning strokes, reversal of the electric field, ionospheric disturbances, and a sodium layer (NaS), based on the joint observations by a temperature/wind (T/W, where the slash means “and”) lidar, an ionosonde, an atmospheric electric mill, a fluxgate magnetometer, and the World Wide Lightning Location Network (WWLLN). Our results suggest that lightning strokes could trigger or amplify the formation of an NaS layer in a descending sporadic E layer (ES), through a mechanism that involves the overturning of the electric field. A conjunction between the lower and upper atmospheres could be established as follows by these inter-connected phenomena, and the key processes could be suggested to be: lightning strokes → overturning of the electric field → ES generating NaS.
Abstract We report 19 coobserved enhanced sodium layers, including sporadic sodium layers (SSLs) and thermospheric enhanced sodium layers (TeSLs), over Hefei (31.8°N, 117.3°E) and Wuhan (30.5°N, 114.4°E) from 2011 to 2018. The total coobservation time at Hefei and Wuhan was 387.24 hr, and the average occurrence rates were 0.038 hr −1 and 0.028 hr −1 for the SSLs and TeSLs, respectively. The SSL and TeSL occurrence rates in summer were 0.078 and 0.039 hr −1 , respectively, which were considerably higher than those in other seasons. Among all 19 cases, 16 cases, including 9 SSL cases and 7 TeSL cases, occurred almost simultaneously over Hefei and Wuhan without a time delay. Seven TeSLs and four out of the nine SSLs were accompanied by ionospheric sporadic E ( E s ), suggesting that an “ E s ‐SSL (TeSL)” chain formed via the wave‐induced wind shear mechanism. Three SSLs were modulated by waves and the two other cases were related with gravity wave overturning. In general, the correlation coefficients between Hefei and Wuhan for long‐duration cases (more than 2 hr) were high due to some large‐scale mechanism, and the short‐duration cases (less than 2 hr) had poor correlation due to different local characteristics. In addition, three cases were observed with an apparent time delay over Hefei and Wuhan, which might indicate the possible existence of long‐distance transport processes.
Abstract We present a multi-instrument experiment to study the effects of tropospheric thunderstorms on the mesopause region and the lower ionosphere. Sodium (Na) lidar and ionospheric observations by two digital ionospheric sounders are used to study the variation in the neutral metal atoms and metallic ions above thunderstorms. An enhanced ionospheric sporadic E layer with a downward tidal phase is observed followed by a subsequent intensification of neutral Na number density with an increase of 600 cm −3 in the mesosphere. In addition, the Na neutral chemistry and ion-molecule chemistry are considered in a Na chemistry model to simulate the dynamical and chemical coupling processes in the mesosphere and ionosphere above thunderstorms. The enhanced Na layer in the simulation obtained by using the ionospheric observation as input is in agreement with the Na lidar observation. We find that the intensification of metallic layered phenomena above thunderstorms is associated with the atmospheric tides, as a result of the troposphere-mesosphere-ionosphere coupling.
Abstract The dependence of the nightside (21:00–03:00 MLT; magnetic local time) auroral energy flux on solar activity was quantitatively studied for winter/dark and geomagnetically quiet conditions. Using data combined from Thermosphere, Ionosphere, Mesosphere Energetics and Dynamics/Global Ultraviolet Imager and Defense Meteorological Satellite Program/Special Sensor Ultraviolet Spectrographic Imager observations, we separated the effects of geomagnetic activity from those of solar flux on the nightside auroral precipitation. The results showed that the nightside auroral power was reduced by ~42% in solar maximum ( F 10.7 = 200 sfu; solar flux unit 1 sfu = 10 −22 W m −2 Hz −1 ) with respect to that under solar minimum ( F 10.7 = 70 sfu) for the Kp = 1 condition, and this change rate became less (~21%) for the Kp = 3 condition. In addition, the solar cycle dependence of nightside auroral power was similar with that from both the premidnight (21:00–23:00 MLT) and postmidnight (01:00–03:00 MLT) sectors. These results indicated that as the ionospheric ionization increases with the enhanced auroral and geomagnetic activities, the solar activity dependences of nightside auroral power become weaker, at least under geomagnetically quiet conditions.
The ionospheric sporadic E (Es) layer has a significant impact on the global positioning system (GPS)/global navigation satellite system (GNSS) signals. These influences on the GPS/GNSS signals can also be used to study the occurrence and characteristics of the Es layer on a global scale. In this paper, 5.8 million radio occultation (RO) profiles from the FORMOSAT-3/COSMIC satellite mission and ground-based observations of Es layers recorded by 25 ionospheric monitoring stations and held at the UK Solar System Data Centre at the Rutherford Appleton Laboratory and the Chinese Meridian Project were used to derive the hourly Es critical frequency (
Abstract The nonlinear interaction between the westward quasi 2 day wave (QTDW) with zonal wave number s = 3 (W3) and stationary planetary wave with s = 1 (SPW1) is first investigated using both Thermosphere, Ionosphere, and Mesosphere Electric Dynamics (TIMED) satellite observations and the thermosphere‐ionosphere‐mesosphere electrodynamics general circulation model (TIME‐GCM) simulations. A QTDW with westward s = 2 (W2) is identified in the mesosphere and lower thermosphere (MLT) region in TIMED/Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) temperature and TIMED/TIMED Doppler Imager (TIDI) wind observations during 2011/2012 austral summer period, which coincides with a strong SPW1 episode at high latitude of the northern winter hemisphere. The temperature perturbation of W2 QTDW reaches a maximum amplitude of ~8 K at ~30°S and ~88 km in the Southern Hemisphere, with a smaller amplitude in the Northern Hemisphere at similar latitude and minimum amplitude at the equator. The maximum meridional wind amplitude of the W2 QTDW is observed to be ~40 m/s at 95 km in the equatorial region. The TIME‐GCM is utilized to simulate the nonlinear interactions between W3 QTDW and SPW1 by specifying both W3 QTDW and SPW1 perturbations at the lower model boundary. The model results show a clear W2 QTDW signature in the MLT region, which agrees well with the TIMED/SABER temperature and TIMED/TIDI horizontal wind observations. We conclude that the W2 QTDW during the 2011/2012 austral summer period results from the nonlinear interaction between W3 QTDW and SPW1.
Significance Non–line-of-sight (NLOS) imaging can recover details of a hidden scene from the indirect light that has scattered multiple times. Despite recent advances, NLOS imaging has remained at short-range verifications. Here, both experimental and conceptual innovations yield hardware and software solutions to increase NLOS imaging from meter to kilometer range. This range is about three orders of magnitude longer than previous experiments. The results will open avenues for the development of NLOS imaging techniques and relevant applications to real-world conditions.