logo
    Solar cycle variations of thermospheric O/N2 longitudinal pattern from TIMED/GUVI
    20
    Citation
    26
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Thermospheric composition (O/N2 ratio) is well known to have a great impact on the variation of daytime ionospheric electron density. This study aims to investigate the local time, seasonal, and solar cycle variations of the O/N2 longitudinal pattern in both hemispheres during daytime in solstices. The O/N2 data used are from TIMED/Global Ultraviolet Imager observations made over a solar cycle for geomagnetically quiet conditions. The main findings are as follows: (1) The O/N2 longitudinal patterns are generally similar during 10:00–14:00 LT and between solar minimum and maximum, although the O/N2 values change with local time and solar cycle. (2) The winter O/N2 subauroral enhancement is unexpectedly smaller in the longitudes where the magnetic pole is (near-pole longitudes), rather than in the longitudes far from the magnetic pole, especially during solar maximum, and consequently, the longitudinal pattern of O/N2 depends on latitude in local winter. (3) The winter O/N2 subauroral enhancement generally moves to more poleward latitudes during solar maximum, as compared to solar minimum. (4) At higher midlatitudes (~45°–60°N and ~40°–50°S in geographic latitudes) in solar minimum, the winter-to-summer ratio of O/N2 in each hemisphere has an obvious minimum in near-pole longitudes. This minimum becomes more evident during solar maximum. The National Center for Atmospheric Research Thermosphere-Ionosphere-Electrodynamics General Circulation Model simulations indicate that in the winter hemisphere, the unexpected O/N2 longitudinal pattern in higher midlatitudes is mainly associated with high-latitude Joule heating under the impact from ion convection and auroral precipitation.
    Keywords:
    Solar minimum
    Solar maximum
    Middle latitudes
    Solstice
    Solar cycle 24
    Solar cycle 22
    Longitude
    We present the first global empirical model for the quiet time F region equatorial vertical drifts based on combined incoherent scatter radar observations at Jicamarca and Ion Drift Meter observations on board the Atmospheric Explorer E satellite. This analytical model, based on products of cubic‐B splines and with nearly conservative electric fields, describes the diurnal and seasonal variations of the equatorial vertical drifts for a continuous range of all longitudes and solar flux values. Our results indicate that during solar minimum, the evening prereversal velocity enhancement exhibits only small longitudinal variations during equinox with amplitudes of about 15–20 m/s, is observed only in the American sector during December solstice with amplitudes of about 5–10 m/s, and is absent at all longitudes during June solstice. The solar minimum evening reversal times are fairly independent of longitude except during December solstice. During solar maximum, the evening upward vertical drifts and reversal times exhibit large longitudinal variations, particularly during the solstices. In this case, for a solar flux index of 180, the June solstice evening peak drifts maximize in the Pacific region with drift amplitudes of up to 35 m/s, whereas the December solstice velocities maximize in the American sector with comparable magnitudes. The equinoctial peak velocities vary between about 35 and 45 m/s. The morning reversal times and the daytime drifts exhibit only small variations with the phase of the solar cycle. The daytime drifts have largest amplitudes between about 0900 and 1100 LT with typical values of 25–30 m/s. We also show that our model results are in good agreement with other equatorial ground‐based observations over India, Brazil, and Kwajalein.
    Solstice
    Equinox
    Solar maximum
    Longitude
    Solar minimum
    Noon
    Local time
    Citations (601)