Summary Seismological models of the outer core’s radial velocity structure show that the outermost core is slower than PREM. For models derived from body-wave data these low velocities are confined to the top of the outer core, while normal-mode data prefer a velocity gradient that deviates from PREM throughout the entire outer core. These different models have led to conflicting interpretations regarding the presence of stratification at the top of the outer core. While body-wave based models have been shown to require a compositionally stratified outermost core, the velocity and density profiles obtained from normal-mode data correspond to a homogeneous outer core. In addition, the observed low velocities in the outermost core are difficult to reconcile with compositional models of stratification, as the required enrichment in light elements would generally increase seismic velocities. Here, we investigate how well-suited both seismic body-wave and normal-mode data are to constrain the velocity and density structure of the outer core. To this end, we model and compare the effects of outer-core structure and D″ structure on the differential traveltimes of body-wave phases SmKS and on the centre frequencies of normal modes. We find that a trade-off between outer-core structure and D″ structure exists for both data types, but neither data can be readily explained by reasonable D″ velocities and densities. Low outermost-core velocities are therefore still required by seismological data. Using additional information from the centre frequencies of Stoneley modes—normal modes that are particularly sensitive to variations in velocity and density at the top of the outer core—we confirm that normal-mode data indeed require low velocities with respect to PREM in the outermost core, similar to a recent normal-mode model, and an overall higher outer-core density. The presence of buoyant stratification in the outermost core is therefore not immediately supported by the centre frequencies of Stoneley modes. Stratification with high seismic velocity, as one would expect from most straightforward stratification-forming processes, is directly contradicted by our results.
SUMMARY Observations of large-scale seismic anisotropy can be used as a marker for past and current deformation in the Earth’s mantle. Nonetheless, global features such as the decrease of the strength of anisotropy between ∼150 and 410 km in the upper mantle and weaker anisotropy observations in the transition zone remain ill-understood. Here, we report a proof of concept method that can help understand anisotropy observations by integrating pressure-dependent microscopic flow properties in mantle minerals particularly olivine and wadsleyite into geodynamic simulations. The model is built against a plate-driven semi-analytical corner flow solution underneath the oceanic plate in a subduction setting spanning down to 660 km depth with a non-Newtonian n = 3 rheology. We then compute the crystallographic preferred orientation (CPO) of olivine aggregates in the upper mantle (UM), and wadsleyite aggregates in the upper transition zone (UTZ) using a viscoplastic self-consistent (VPSC) method, with the lower transition zone (LTZ, below 520 km) assumed isotropic. Finally, we apply a tomographic filter that accounts for finite-frequency seismic data using a fast-Fourier homogenization algorithm, with the aim of providing mantle models comparable with seismic tomography observations. Our results show that anisotropy observations in the UM can be well understood by introducing gradual shifts in strain accommodation mechanism with increasing depths induced by a pressure-dependent plasticity model in olivine, in contrast with simple A-type olivine fabric that fails to reproduce the decrease in anisotropy strength observed in the UM. Across the UTZ, recent mineral physics studies highlight the strong effect of water content on both wadsleyite plastic and elastic properties. Both dry and hydrous wadsleyite models predict reasonably low anisotropy in the UTZ, in agreement with observations, with a slightly better match for the dry wadsleyite models. Our calculations show that, despite the relatively primitive geodynamic setup, models of plate-driven corner flows can be sufficient in explaining first-order observations of mantle seismic anisotropy. This requires, however, incorporating the effect of pressure on mineralogy and mineral plasticity models.
Abstract. Reducing wind turbine noise recorded at seismological stations promises to lower the conflict between renewable energy producers and seismologists. Seismic noise generated by the movement of wind turbines has been shown to travel large distances, affecting seismological stations used for seismic monitoring and/or the detection of seismic events. In this study, we use advanced 3D numerical techniques to study the possibility of using structural changes in the ground on the wave-path between the wind turbine and the seismic station in order to reduce or mitigate the noise generated by the wind turbine. Testing a range of structural changes around the foundation of the wind turbine, such as open and filled cavities, we show that we are able to considerably reduce the seismic noise recorded by placing empty circular trenches approx. 10 meters away from the wind turbines. We show the expected effects of filling the trenches with water. In addition, we study how relatively simple topographic elevations influence the propagation of the seismic energy generated by wind turbines and find that topography does help to reduce wind turbine induced seismic noise.