In an ocean with rapidly changing chemistry, studies have assessed coral skeletal health under projected ocean acidification (OA) scenarios by characterizing morphological distortions in skeletal architecture and measuring bulk properties, such as net calcification and dissolution. Few studies offer more detailed information on skeletal mineralogy. Since aragonite crystallography will at least partially govern the material properties of coral skeletons, such as solubility and strength, it is important to understand how it is influenced by environmental stressors. Here, we take a mineralogical approach using micro X-ray diffraction (XRD) and whole pattern Rietveld refinement analysis to track crystallographic shifts in deep-sea coral Lophelia pertusa samples collected along a natural seawater aragonite saturation state gradient (Ωsw= 1.15–1.44) in the Gulf of Mexico. Our results reveal statistically significant linear relationships between rising Ωsw and increasing unit cell volume driven by an anisotropic lengthening along the b-axis. These structural changes are similarly observed in synthetic aragonites precipitated under various saturation states, indicating that these changes are inherent to the crystallography of aragonite. Increased crystallographic disorder via widening of the full width at half maximum of the main (111) XRD peaks trend with increased Ba substitutions for Ca, however, trace substitutions by Ba, Sr, and Mg do not trend with crystal lattice parameters in our samples. Instead, we observe a significant trend of increasing calcite content as a function of both decreasing unit cell parameters as well as decreasing Ωsw. This may make calcite incorporation an important factor to consider in coral crystallography, especially under varying aragonite saturation states (ΩAr). Finally, by defining crystallography-based linear relationships between ΩAr of synthetic aragonite analogs and lattice parameters, we predict internal calcifying fluid saturation state (Ωcf = 11.1–17.3 calculated from b-axis lengths; 15.2–25.2 calculated from unit cell volumes) for L. pertusa, which may allow this species to calcify despite the local seawater conditions. This study will ideally pave the way for future studies to utilize quantitative XRD in exploring the impact of physical and chemical stressors on biominerals.
Abstract Deep-sea methane seeps are dynamic sources of greenhouse gas production and unique habitats supporting ocean biodiversity and productivity. Here, we demonstrate new animal-bacterial symbioses fueled by methane, between two undescribed species of annelid (a serpulid Laminatubus and sabellid Bispira ) and distinct methane-oxidizing Methylococcales bacteria. Worm tissue δ 13 C of −44‰ to −58‰ suggested methane-fueled nutrition for both species and shipboard experiments revealed active assimilation of 13 C-labelled CH 4 into animal biomass, occurring via engulfment of methanotrophic bacteria across the host epidermal surface. These worms represent a new addition to the few animals known to intimately associate with methane-oxidizing bacteria, and further explain their enigmatic mass occurrence at 150-million-year-old fossil seeps. High-resolution seafloor surveys document significant coverage by these symbioses, beyond typical obligate seep fauna. These findings uncover novel consumers of methane in the deep-sea, and by expanding the known spatial extent of methane seeps, may have important implications for deep-sea conservation.
Abstract Many chemosynthesis-based communities prospering in deep-sea environments rely on the metabolic activity of sulfide-oxidizing bacteria. This is the case for vestimentiferan siboglinid tubeworms, whose demand for nutrition is satisfied predominantly by their endosymbiotic bacteria harbored in a specialized organ called the trophosome. Such chemosymbiosis leads to a significantly lower nitrogen isotope composition of the trophosome than in other types of soft tissue. However, the specific process of nitrogen utilization by siboglinids remains unclear. As a key element in the relevant enzymes (nitrogenase and nitrate reductase), molybdenum (Mo) is indispensable in the biogeochemical cycling of nitrogen. The Mo isotope composition (δ98Mo) of siboglinids is thus a potential proxy for decoding the processes involved in nitrogen metabolism. In this study, we found δ98Mo values along the chitinous tube of the vestimentiferan siboglinid Paraescarpia echinospica from the Haima seeps of the South China Sea as negative as −4.59‰ (−1.13‰ ± 1.75‰, 1SD, n = 19)—the lowest δ98Mo value ever reported for any kind of natural material. It is suggested that this extremely negative Mo isotope composition is caused by preferential utilization of isotopically light Mo by the tubeworm’s endosymbionts or epibionts during nitrate reduction. Such Mo isotope signature could provide a means for identifying siboglinid tubeworms, a group of annelids that has previously escaped unambiguous identification due to the lack of mineralized skeleton, in the rock record.
Human-modified habitats are expanding rapidly; many tropical countries have highly fragmented and degraded forests. Preserving biodiversity in these areas involves protecting species-like frugivorous bats-that are important to forest regeneration. Fruit bats provide critical ecosystem services including seed dispersal, but studies of how their diets are affected by habitat change have often been rather localized. This study used stable isotope analyses (δ15N and δ13C measurement) to examine how two fruit bat species in Madagascar, Pteropus rufus (n = 138) and Eidolon dupreanum (n = 52) are impacted by habitat change across a large spatial scale. Limited data for Rousettus madagascariensis are also presented. Our results indicated that the three species had broadly overlapping diets. Differences in diet were nonetheless detectable between P. rufus and E. dupreanum, and these diets shifted when they co-occurred, suggesting resource partitioning across habitats and vertical strata within the canopy to avoid competition. Changes in diet were correlated with a decrease in forest cover, though at a larger spatial scale in P. rufus than in E. dupreanum. These results suggest fruit bat species exhibit differing responses to habitat change, highlight the threats fruit bats face from habitat change, and clarify the spatial scales at which conservation efforts could be implemented.
Abstract Motivation Traits are increasingly being used to quantify global biodiversity patterns, with trait databases growing in size and number, across diverse taxa. Despite growing interest in a trait‐based approach to the biodiversity of the deep sea, where the impacts of human activities (including seabed mining) accelerate, there is no single repository for species traits for deep‐sea chemosynthesis‐based ecosystems, including hydrothermal vents. Using an international, collaborative approach, we have compiled the first global‐scale trait database for deep‐sea hydrothermal‐vent fauna – sFDvent ( s Div‐funded trait database for the F unctional D iversity of vent s). We formed a funded working group to select traits appropriate to: (a) capture the performance of vent species and their influence on ecosystem processes, and (b) compare trait‐based diversity in different ecosystems. Forty contributors, representing expertise across most known hydrothermal‐vent systems and taxa, scored species traits using online collaborative tools and shared workspaces. Here, we characterise the sFDvent database, describe our approach, and evaluate its scope. Finally, we compare the sFDvent database to similar databases from shallow‐marine and terrestrial ecosystems to highlight how the sFDvent database can inform cross‐ecosystem comparisons. We also make the sFDvent database publicly available online by assigning a persistent, unique DOI. Main types of variable contained Six hundred and forty‐six vent species names, associated location information (33 regions), and scores for 13 traits (in categories: community structure, generalist/specialist, geographic distribution, habitat use, life history, mobility, species associations, symbiont, and trophic structure). Contributor IDs, certainty scores, and references are also provided. Spatial location and grain Global coverage (grain size: ocean basin), spanning eight ocean basins, including vents on 12 mid‐ocean ridges and 6 back‐arc spreading centres. Time period and grain sFDvent includes information on deep‐sea vent species, and associated taxonomic updates, since they were first discovered in 1977. Time is not recorded. The database will be updated every 5 years. Major taxa and level of measurement Deep‐sea hydrothermal‐vent fauna with species‐level identification present or in progress. Software format .csv and MS Excel (.xlsx).
The abundance and higher taxonomic composition of epizooic metazoan meiobenthic communities associated with mussel and tubeworm aggregations of hydrocarbon seeps at Green Canyon, Atwater Valley, and Alaminos Canyon in depths between 1400 and 2800 m were studied and compared to the infaunal community of non-seep sediments nearby. Epizooic meiofaunal abundances of associated meiobenthos living in tubeworm bushes and mussel beds at seeps were extremely low (usually <100 ind. 10 cm(-2)), similar to epizooic meiofauna at deep-sea hydrothermal vents, and the communities were composed primarily of nematodes, copepods, ostracods, and halacarids. In contrast, epizooic meiobenthic abundance is lower than previous studies have reported for infauna from seep sediments. Interestingly, non-seep sediments contained higher abundances and higher taxonomic diversity than epizooic seep communities, although in situ primary production is restricted to seeps.
Abstract Aim The Deepwater Horizon disaster resulted in the largest accidental marine oil spill in history and caused extensive injury to deep‐sea habitats, including cold‐water coral communities dominated by Paramuricea species. One of the primary difficulties in assessing the full extent of the injury to cold‐water coral ecosystems is the extreme paucity of observational data and the subsequent lack of knowledge of their distribution within the affected region. The aim of this study was to use habitat suitability modelling to estimate the number of potentially affected Paramuricea sp. corals across the northern Gulf of Mexico. Location Northern Gulf of Mexico. Taxon Cold‐water corals in the genus Paramuricea. Methods High‐resolution (12.5 m) models were built using the maximum entropy (Maxent) approach using remotely sensed data including seafloor topography, seismic reflectivity, temperature and the amount of productivity exported from the surface. Model outputs were used to estimate the number of potential coral sites in the northern Gulf of Mexico, delineated as areas with both high habitat suitability scores and the presence of hard substrate. The number of coral sites was further adjusted using a ground‐truthing procedure using autonomous underwater vehicle‐transect data. Results Across the entire study area in the northern Gulf of Mexico, there were 558 predicted coral sites, covering an area of 14.2 km 2 . Within a 2,291 km 2 region shown to have been directly affected by the spill and subsequent oil plume, there were 66 predicted coral sites covering an area of 1.2 km 2 with an average of 63 corals per site. Main Conclusions Our results indicate that the magnitude of injury stemming from the spill was likely far higher than previously known, and will help quantify the full extent of the losses incurred as well as prioritize disturbed areas for future research and restoration efforts.
Here, the development and construction of recirculating aquaria for the long‐term maintenance and study of deep‐water corals in the laboratory is described. This system may be applied to the maintenance and experimentation on marine organisms in the absence of a natural seawater supply. Since 2009, numerous colonies of Lophelia pertusa as well as several species of associated invertebrates from the Gulf of Mexico have been maintained in the described systems. The behavior of some of these species, including L. pertusa , the corallivorous snail Coralliophila sp., the polychaete Eunice sp., and the galetheoid crab Eumunida picta in the laboratory is described. Additionally, these systems were used for the manipulation of pH and dissolved oxygen for short‐term experiments using L. pertusa . The detailed manipulation of carbonate chemistry in artificial seawater is described for use in ocean acidification experiments.