Subterranean estuaries the, subsurface mixing zones of terrestrial groundwater and seawater, substantially influence solute fluxes to the oceans. Solutes brought by groundwater from land and solutes brought from the sea can undergo biogeochemical reactions. These are often mediated by microbes and controlled by reactions with coastal sediments, and determine the composition of fluids discharging from STEs (i.e., submarine groundwater discharge), which may have consequences showing in coastal ecosystems. While at the local scale (meters), processes have been intensively studied, the impact of subterranean estuary processes on solute fluxes to the coastal ocean remains poorly constrained at the regional scale (kilometers). In the present communication, we review the processes that occur in STEs, focusing mainly on fluid flow and biogeochemical transformations of nitrogen, phosphorus, carbon, sulfur and trace metals. We highlight the spatio-temporal dynamics and measurable manifestations of those processes. The objective of this contribution is to provide a perspective on how tracer studies, geophysical methods, remote sensing and hydrogeological modeling could exploit such manifestations to estimate the regional-scale impact of processes in STEs on solute fluxes to the coastal ocean.
Abstract
In shallow water regions, such as the coastal areas of the North Sea, nutrient and carbon cycles are driven by a close coupling of benthic-pelagic processes. Due to shallow water depths, a substantial amount of organic matter which is produced via primary production in surface waters is transferred to the seafloor. Most of the organic matter is degraded within surface sediments and nutrients such as NH4 or PO4 are transported back into the water column, whereas only a small amount of organic carbon is buried within the sediment. Consequently, benthic carbon and nutrient fluxes have a direct impact on biological and geological processes such as the availability of nutrients in the water column, nutrient budgets or the storage of carbon within marine sediments. Even though coastal carbon and nutrient cycles are intensively investigated, their seasonal and diurnal variability is poorly understood. The aim of this study was to quantify benthic carbon and nutrient fluxes in the southern North Sea during different seasons. The results are used for carbon and nutrient mass budgets. Furthermore processes which affect carbon and nutrient fluxes over seasonal and diurnal scales were identified.
Chapter 2 and 3 present a seasonal study on benthic carbon and nutrient fluxes in the southern North Sea. During five cruises on RV Heincke, carried out in June 2012, August 2012, March 2013, November 2013 and March 2014, carbon and nutrient cycles were studied with the benthic lander NuSObs (Nutrient and Suspension Observatory) and shipboard sampling techniques. Chapter 4 presents laboratory experiments in which the diurnal variability of benthic carbon and nitrate fluxes were studied in light:dark cycles.
The first manuscript (chapter 2) presents benthic oxygen and nitrogen fluxes derived from in situ incubations and pore water data. Both oxygen and nitrogen fluxes followed the seasonal cycle with highest fluxes in summer and autumn and lowest fluxes in winter. Detailed investigations of the benthic macrofauna and tracer flux studies underline the importance of faunal induced transport of solutes along the sediment water interface for the mineralisation of organic matter in summer and autumn. Over spatial scales the suspension feeder Ensis directus had a considerable impact on benthic carbon cycling. Estimated recycling efficiencies of organic bound carbon revealed that most of the carbon (76-93 %) and nitrogen (87-97 %) reaching the seafloor are remineralized within surface sediments.
The second manuscript (chapter 3) discusses benthic silicic acid (Si(OH)4) fluxes which were determined with different sampling techniques including in situ incubations with the benthic lander NuSObs, ex situ incubations and calculated fluxes based on pore water profiles. A comparison of the different sampling techniques shows that in shallow water coastal areas in situ techniques are
6
Abstract
required for a precise quantification of benthic fluxes. Strong seasonal variations in silicic acid effluxes were measured by in situ and ex situ incubations with highest fluxes in summer and autumn and lowest fluxes in winter. Estimated annual rain rates of biogenic silica (bSi) reaching the seafloor of the southern North Sea were within a range of 1.7 to 2.2 mol bSi m-2 a-1.
The third manuscript considers the results of laboratory experiments on diurnal cycling of oxygen and nitrate in a coastal sediment. An oxygen optode (PyroscienceTM) and an optical nitrate sensor (SatlanticTM) were applied to closed microcosm experiments in order to monitor oxygen and nitrate continuously in incubation experiments. A diatom dominated sediment was incubated over 12 hour light:dark shifts.
During daylight oxygen was produced by benthic diatoms and during night time consumed by heterotrophs and the oxidation of reduced solutes. The consumption of oxygen was regulated by the presence or absence of benthic macrofauna. Monitoring nitrate continuously with the nitrate sensor revealed that at the onset of light, while sediments and bottom waters were anoxic, a nitrate reducing or assimilating process takes place within surface sediments.
Abstract Terrestrial groundwater travels through subterranean estuaries before reaching the sea. Groundwater‐derived nutrients drive coastal water quality, primary production, and eutrophication. We determined how dissolved inorganic nitrogen (DIN), dissolved inorganic phosphorus (DIP), and dissolved organic nitrogen (DON) are transformed within subterranean estuaries and estimated submarine groundwater discharge (SGD) nutrient loads compiling > 10,000 groundwater samples from 216 sites worldwide. Nutrients exhibited complex, nonconservative behavior in subterranean estuaries. Fresh groundwater DIN and DIP are usually produced, and DON is consumed during transport. Median total SGD (saline and fresh) fluxes globally were 5.4, 2.6, and 0.18 Tmol yr −1 for DIN, DON, and DIP, respectively. Despite large natural variability, total SGD fluxes likely exceed global riverine nutrient export. Fresh SGD is a small source of new nutrients, but saline SGD is an important source of mostly recycled nutrients. Nutrients exported via SGD via subterranean estuaries are critical to coastal biogeochemistry and a significant nutrient source to the oceans.