We report the intercalibration of paleomagnetic secular variation (PSV) and radiocarbon dates of two expanded postglacial sediment cores from geographically proximal, but oceanographically and sedimentologically contrasting settings. The objective is to improve relative correlation and chronology over what can be achieved with either method alone. Core MD99‐2269 was taken from the Húnaflóaáll Trough on the north Iceland shelf. Core MD99‐2322 was collected from the Kangerlussuaq Trough on the east Greenland margin. Both cores are well dated, with 27 and 20 accelerator mass spectrometry 14 C dates for cores 2269 and 2322, respectively. Paleomagnetic measurements made on u channel samples document a strong, stable, single‐component magnetization. The temporal similarities of paleomagnetic inclination and declination records are shown using each core's independent calibrated radiocarbon age model. Comparison of the PSV records reveals that the relative correlation between the two cores could be further improved. Starting in the depth domain, tie points initially based on calibrated 14 C dates are either adjusted or added to maximize PSV correlations. Radiocarbon dates from both cores are then combined on a common depth scale resulting from the PSV correlation. Support for the correlation comes from the consistent interweaving of dates, correct alignment of the Saksunarvatn tephra, and the improved correlation of paleoceanographic proxy data (percent carbonate). These results demonstrate that PSV correlation used in conjunction with 14 C dates can improve relative correlation and also regional chronologies by allowing dates from various stratigraphic sequences to be combined into a single, higher dating density, age‐to‐depth model.
To evaluate whether proxies that record surface, near-surface, and bottom water conditions from the North Iceland shelf have similar trends and periodicities, we examine Holocene century-scale paleoceanographic records from core MD99-2269. This core site lies close to the boundary between Atlantic and Arctic/Polar waters, and in an area frequently influenced by drift ice. The proxies are stable δ 13 C and δ 18 O values on planktonic and benthic foraminifera, alkenone-based sea-surface temperatures (SST°C), and foraminiferal Mg/Ca SST°C and bottom water temperature (BWT°C) estimates. These data were converted to equi-spaced 60-year time-series; significant trends were extracted using Singular Spectrum Analysis, which accounted for between 50% and 70% of the variance. In order to evaluate within-site ocean climate variability, a comparison between these data and previously published proxies from MD99-2269 was carried out on a standardized data set of 14 proxies covering the interval 400–9200 cal. yr BP. Principal component (PC) analysis indicated that the first two PC axes accounted for 57% of the variability with high loadings primarily defining ‘nutrient’ and ‘temperature’ proxies. Fuzzy k-mean clustering of the 14 climate proxies indicated major environmental changes at ~6350 and ~3450 cal. yr BP, which define local early-, middle-, and late-Holocene climatic shifts. Our results indicate that the major control on the combined proxy signal is the Holocene decrease in June insolation, but regional changes in such factors as sea-ice extent and salinity are required to explain the threefold division of the Holocene.