Use of the subsurface for energy resources (enhanced geothermal systems, conventional and unconventional hydrocarbons), or for storage of waste (CO2, radioactive), requires the prediction of how fluids and the fractured porous rock mass interact. The GREAT cell (Geo-Reservoir Experimental Analogue Technology) is designed to recreate subsurface conditions in the laboratory to a depth of 3.5 km on 200 mm diameter rock samples containing fracture networks, thereby enabling these predictions to be validated. The cell represents an important new development in experimental technology, uniquely creating a truly polyaxial rotatable stress field, facilitating fluid flow through samples, and employing state of the art fibre optic strain sensing, capable of thousands of detailed measurements per hour. The cell's mechanical and hydraulic operation is demonstrated by applying multiple continuous orientations of principal stress to a homogeneous benchmark sample, and to a fractured sample with a dipole borehole fluid fracture flow experiment, with backpressure. Sample strain for multiple stress orientations is compared to numerical simulations validating the operation of the cell. Fracture permeability as a function of the direction and magnitude of the stress field is presented. Such experiments were not possible to date using current state of the art geotechnical equipment.
The papers that appear in this Special Publication were assembled to address a topic that was the subject of a conference entitled ‘Damage and Localization’, one of a series of three Euroconferences on rock mechanics and rock physics that were supported by European Commission funding. Some of papers contained herein were derived from the contributions presented at that meeting, but others were solicited subsequently in order to create a coherent volume that illustrates some key facets of the topic as it is now understood. However, the subject is sufficiently broad that a single collection of papers cannot hope to do justice to the whole theme. This Introduction outlines the conceptual threads that underpin the selection of papers that are included in this volume and introduces the cross-scale relationships that are addressed by the individual contributons. We hope that the reader will find these contributions to be stimulating and informative.
There is a growing body of evidence to suggest that most sedimentary sequences are commonly disrupted by discontinuities including non-deposition and erosion. Deposition may account for only a small fraction of the total time represented by a sequence.
Modern scanning electron microscopes often include software that allows for the possibility of obtaining large format high-resolution image montages over areas of several square centimeters. Such montages are typically automatically acquired and stitched, comprising many thousand individual tiled images. Images, collected over a regular grid pattern, are a rich source of information on factors such as variability in porosity and distribution of mineral phases, but can be hard to visually interpret. Additional quantitative data can be accessed through the application of image analysis. We use backscattered electron (BSE) images, collected from polished thin sections of two limestone samples from the Cretaceous of Brazil, a Carboniferous limestone from Scotland, and a carbonate cemented sandstone from Northern Ireland, with up to 25,000 tiles per image, collecting numerical quantitative data on the distribution of porosity. Images were automatically collected using the FEI software Maps, batch processed by image analysis (through ImageJ), with results plotted on 2D contour plots with MATLAB. These plots numerically and visually clearly express the collected porosity data in an easily accessible form, and have application for the display of other data such as pore size, shape, grain size/shape, orientation and mineral distribution, as well as being of relevance to sandstone, mudrock and other porous media.