Abstract Integrated watershed management (IWM) is a priority, especially in semiarid regions that are concurrently affected by population growth, land use change, soil erosion, and poor governance. In developing countries, IWM is often done without any support tool, scientific data, or deep knowledge of territory characteristics. The aim of this study was to present a case study to apply a decision support tool to prioritize areas for territory management. A simple, quantitative multi‐criteria analysis was applied in a semiarid basin of the Ecuadorian Andes to identify the zones of greatest concern for implementation of resource conservation and management practices at a local and regional scale. In addition to describing the current state of the conditions of this basin, our results suggest scenarios of change in relation to official population projections based on spatial analysis of land use change. Analysis resulted in a scattered distribution of priority values within the watershed, so a hierarchical rule was incorporated to define priorities at the subwatershed (SW) scale. Our analysis identified four SW of very high priority and urgent need to implement management practices. Based on projections of future change due to population growth and land cover change, the number of subbasins that require more attention was doubled. Finally, this study includes zones for management or conservation of the land, according to the Sustainable Development Goals.
Using a reference Froude number, a nonlinear convection-diffusion equation was derived from the Saint-Venant equations of continuity and momentum, and was solved by a mixing-cell method. The method involves discretizing the nonlinear diffusion equation in space and transforming it to a first-order nonlinear ordinary differential equation where the optimal space interval is obtained to be the same as the characteristic reach length. The nonlinear ordinary differential equation was solved by the fourth-order Runge-Kutta method. The method was tested with numerical examples, and compared with the looped-rating Muskingum-Cunge model and a lambda scheme. The outflow hydrographs produced by this method were of comparable accuracy.
Frequent droughts, seasonal precipitation, and growing agricultural water demand in the Yakima River Basin (YRB), located in Washington State, increase the challenges of optimizing water provision for agricultural producers. Increasing water storage through managed aquifer recharge (MAR) can potentially relief water stress from single and multi-year droughts. In this study, we developed an aggregated water resources management tool using a System Dynamics (SD) framework for the YRB and evaluated the MAR implementation strategy and the effectiveness of MAR in alleviating drought impacts on irrigation reliability. The SD model allocates available water resources to meet instream target flows, hydropower demands, and irrigation demand, based on system operation rules, irrigation scheduling, water rights, and MAR adoption. Our findings suggest that the adopted infiltration area for MAR is one of the main factors that determines the amount of water withdrawn and infiltrated to the groundwater system. The implementation time frame is also critical in accumulating MAR entitlements for single-year and multi-year droughts mitigation. In addition, adoption behaviors drive a positive feedback that MAR effectiveness on drought mitigation will encourage more MAR adoptions in the long run. MAR serves as a promising option for water storage management and a long-term strategy for MAR implementation can improve system resilience to unexpected droughts.
Precipitation infiltrates into the lead–zinc–silver Bunker Hill Mine, oxidizes pyrite, and produces acidic waters that discharge from the mine portal. The metasedimentary geology and alteration from 100+ yr of mining provide a heterogeneous environment for source water infiltration and flow within the mine. A university–industry partnership was developed to trace the mine water sources, flowpaths, and travel times to identify potential areas for infiltration reduction. Snowpack, creek, and mine water samples were collected over a 1-year period for the analysis of δ2H, δ18O, and 3H, along with the in situ measurement of temperature, specific conductance, pH, dissolved oxygen, and flow. The isotope tracers were used to identify the source waters, unmix mine water as it moved deeper in the mine, and examine flowpaths in and near the acid-generating pyritic zone. The results indicate creek water infiltrating relatively quickly through the anthropogenically-modified pathways and causing the largest amount of acidic water in the upper levels of the mine. Slower, natural pathways associated with faults, fractures, and bedding planes produce mostly neutral waters with the source waters typically originating at higher elevations. Travel times ranged from <1 to 22 years with shorter pathways to the upper levels of the mine and increasing contributions deeper in the mine from pathways containing older, higher-elevation snowmelt. These slower and older inflows were identified by depleted δ18O values, smaller 3H concentrations, the dampening of the variability of the isotope signals, and pH increases. Reduction of infiltration zones near the upper workings of the mine likely will decrease the acidic waters in the upper levels of the mine, but the higher elevation infiltration zones will continue to contribute snowmelt-derived waters at all mine levels.
One of the most challenging parameters in hillslope‐ and watershed‐scale, distributed, hydrologic models is the lateral saturated hydraulic conductivity ( K s ). In this paper, we present a methodology to determine the hillslope‐scale lateral K s above a moderately deep sloping restrictive layer in an 18 × 35 m hillslope plot using perched water level measurements and drain tile outflow data. The hillslope‐scale lateral K s was compared to small‐scale K s measured with small soil cores and the Guelph permeameter. Our results show that small‐scale K s measurements underestimate the actual hillslope‐scale K s . The hillslope‐scale K s measurements were 13.7, 4.1, and 3.2 larger than small soil core measurements in the A, B, and E horizons, respectively. We argue that the gap between small‐scale and hillslope‐scale K s within the same porous medium is foremost a measurement problem. Data analysis provided the K s distribution with depth, showing a sharp decrease in K s within the first 0.1 m of the soil and an exponential decline in K s below 0.1 m. The distribution of K s with depth was best described by a double‐exponential relationship. Overall, results indicate the importance of macroporosity, perhaps of biological origin, in determining K s at a hillslope scale.
Abstract High‐elevation tropical grassland systems, called Páramo, provide essential ecosystem services such as water storage and supply for surrounding and lowland areas. Páramo systems are threatened by climate and land use changes. Rainfall generation processes and moisture transport pathways influencing precipitation in the Páramo are poorly understood but needed to estimate the impact of these changes, particularly during El Niño conditions, which largely affect hydrometeorological conditions in tropical regions. To fill this knowledge gap, we present a stable isotope analysis of rainfall samples collected on a daily to weekly basis between January 2015 and May 2016 during the strongest El Niño event recorded in history (2014–2016) in two Páramo regions of Central America (Chirripó, Costa Rica) and the northern Andes (Cajas, south Ecuador). Isotopic compositions were used to identify how rainfall generation processes (convective and orographic) change seasonally at each study site. Hybrid Single Particle Lagrangian Integrated Trajectory model (HYSPLIT) air mass back trajectory analysis was used to identify preferential moisture transport pathways to each Páramo site. Our results show the strong influence of north‐east trade winds to transport moisture from the Caribbean Sea to Chirripó and the South American low‐level jet to transport moisture from the Amazon forest to Cajas. These moisture contributions were also related to the formation of convective rainfall associated with the passage of the Intertropical Convergence Zone over Costa Rica and Ecuador during the wetter seasons and to orographic precipitation during the transition and drier seasons. Our findings provide essential baseline information for further research applications of water stable isotopes as tracers of rainfall generation processes and transport in the Páramo and other montane ecosystems in the tropics.
We present a coupling between the one‐dimensional Richards equation for vertical unsaturated flow and the one‐dimensional hillslope‐storage Boussinesq equation (HSB) for lateral saturated flow along complex hillslopes. Here the capillary fringe is included in the flow domain as an integral part of the Boussinesq aquifer. The coupling allows quantitative investigation of the role of unsaturated storage in the relationship between rainfall and recharge. The coupled model (HSB coupled) is compared to the original HSB model (HSB original) and a three‐dimensional Richards equation (RE) based model (taken to be the benchmark) on a set of seven synthetic hillslopes, ranging from convergent to divergent. Using HSB original, the water tables are overestimated and the outflow rates are generally underestimated, and there is no delay between rainfall and recharge. The coupled model, however, shows a remarkably good match with the RE model in terms of outflow rates, and the delay between rainfall and recharge is captured well. We also see a clear improvement in the match to the water tables, even though the values are still overestimated for some hillslope shapes, in particular the convergent slopes. We show that for the hillslope configurations and scenarios examined in this paper it is possible to reproduce hydrographs and water table dynamics with a good degree of accuracy using a low‐dimensional hydrological model.