Abstract. Taihu Lake is hypereutrophic and experiences seasonal, cyanobacterial harmful algal blooms. These Microcystis blooms produce microcystin, a potent liver toxin, and are linked to anthropogenic nitrogen (N) and phosphorus (P) loads to lakes. Microcystis spp. cannot fix atmospheric N and must compete with ammonia-oxidizing and other organisms for ammonium (NH4+). We measured NH4+ regeneration and potential uptake rates and total nitrification using stable-isotope techniques. Nitrification studies included abundance of the functional gene for NH4+ oxidation, amoA, for ammonia-oxidizing archaea (AOA) and bacteria (AOB). Potential NH4+ uptake rates ranged from 0.02 to 6.80 µmol L−1 h−1 in the light and from 0.05 to 3.33 µmol L−1 h−1 in the dark, and NH4+ regeneration rates ranged from 0.03 to 2.37 µmol L−1 h−1. Nitrification rates exceeded previously reported rates in most freshwater systems. Total nitrification often exceeded 200 nmol L−1 d−1 and was > 1000 nmol L−1 d−1 at one station near a river discharge. AOA amoA gene copies were more abundant than AOB gene copies (p < 0.005) at all times; however, only abundance of AOB amoA (not AOA) was correlated with nitrification rates for all stations and all seasons (p < 0.005). Nitrification rates in Taihu Lake varied seasonally; at most stations, rates were highest in March, lower in June, and lowest in July, corresponding with cyanobacterial bloom progression, suggesting that nitrifiers were poor competitors for NH4+ during the bloom. Regeneration results suggested that cyanobacteria relied extensively on regenerated NH4+ to sustain the bloom. Internal NH4+ regeneration exceeded external N loading to the lake by a factor of 2 but was ultimately fueled by external N loads. Our results thus support the growing literature calling for watershed N loading reductions in concert with existing management of P loads.
Abstract Historic shipwrecks function as habitats for benthic organisms by providing food, refuge, and structure. They also form islands of biodiversity on the seabed, shaping microbial ecology and ecosystem processes. This study examined two wooden deep‐sea shipwrecks at 525 and 1800 m water depth and probed their influence on sediment microbiomes and geochemistry. Microbiomes were investigated with 16S rRNA gene amplicon sequencing along 60 m transects extending in four directions from the hulls of the shipwrecks. Distance from shipwrecks and sediment depth both shaped microbiome structure. Archaeal alpha diversity was significantly and positively correlated with proximity to the deeper shipwreck while bacterial diversity was not to either. Archaeal community structure differed at both sites; the deeper site had a higher proportion of Bathyarchaeia and Lokiarchaeia proximate to shipwreck compared to the shallow location. Major bacterial communities were consistent at both sites, however, at the deeper site had higher abundance of Bacteroidetes, Chloroflexi, Desulfofarculales, and Desulfobacteriales. Core microbiome and differential abundance analyses revealed unique taxa nearest the shipwrecks compared to the surrounding seabed including organoheterotrophs, and cellulolytic and sulfur cycling taxa. Sediment carbon content influenced microbiome structure near the shipwrecks (5–10 m). We show that shipwrecks have a distinct sediment microbiome and form unique habitat patches on seabed, resembling those surrounding organic falls. The shipwreck influence was more pronounced at the deeper site, further from terrestrial influences signaling shipwrecks may be a significant source of organic matter in far‐shore oligotrophic settings.
Abstract Urban lakes provide multiple benefits to society while influencing life quality. Moreover, lakes and their microbiomes are sentinels of anthropogenic impact and can be used for natural resource management and planning. Here, we release original metagenomic data from several well-characterized and anthropogenically impacted eutrophic lakes in the vicinity of Stockholm (Sweden). Our goal was to collect representative microbial community samples and use shotgun sequencing to provide a broad view on microbial diversity of productive urban lakes. Our dataset has an emphasis on Lake Mälaren as a major drinking water reservoir under anthropogenic impact. This dataset includes short-read sequence data and metagenome assemblies from each of 17 samples collected from eutrophic lakes near the greater Stockholm area. We used genome-resolved metagenomics and obtained 2378 metagenome assembled genomes that de-replicated into 514 species representative genomes. This dataset adds new datapoints to previously sequenced lakes and it includes the first sequenced set of metagenomes from Lake Mälaren. Our dataset serves as a baseline for future monitoring of drinking water reservoirs and urban lakes.
Biogeography of macro- and micro-organisms in the deep sea is, in part, shaped by naturally occurring heterogeneous habitat features of geological and biological origin such as seeps, vents, seamounts, whale and wood-falls. Artificial features including shipwrecks and energy infrastructure shape the biogeographic patterns of macro-organisms; how they influence microorganisms is unclear. Shipwrecks may function as islands of biodiversity for microbiomes, creating a patchwork of habitats with influence radiating out into the seabed. Here we show microbiome richness and diversity increase as a function of proximity to the historic deep-sea shipwreck Anona in the Gulf of Mexico. Diversity and richness extinction plots provide evidence of an island effect on microbiomes. A halo of core taxa on the seabed was observed up to 200 m away from the wreck indicative of the transition zone from shipwreck habitat to the surrounding environment. Transition zones around natural habitat features are often small in area compared to what was observed at Anona indicating shipwrecks may exert a large sphere of influence on seabed microbiomes. Historic shipwrecks are abundant, isolated habitats with global distribution, providing a means to explore contemporary processes shaping biogeography on the seafloor. This work is a case study for how built environments impact microbial biodiversity and provides new information on how arrival of material to the seafloor shapes benthic microbiomes.
Abstract Harmful cyanobacterial blooms (CyanoHABs) are linked to increasing anthropogenic nitrogen (N) and phosphorus (P) inputs. However, CyanoHABs in many large lakes continue despite extensive abatement efforts, mostly focused on external P loading. Internal nutrient cycling can modify nutrient availability and limitation; thus, understanding the relative importance of external vs. internal nutrient loading is essential for developing effective mitigation strategies for CyanoHABs. We estimated long‐term nutrient budgets for Lake Taihu, China, from mass balance models using extensive monitoring of input and output nutrient data from 2005 to 2018 to quantify contributions from internal nutrient loading. The nutrient mass balance showed that 9% and 63% of annual external N and P inputs, respectively, were retained in the lake. Denitrification removed 54% of external N loading and can thus help explain rapid decreases in lake N concentrations and summer N limitation. Water column regeneration can help sustain CyanoHABs over the short term and contributed 38–58% of potential demand for summer‐fall, Microcystis ‐dominated blooms. Internal P release contributed 23–90% of CyanoHABs P demand, although Taihu was a net P sink on an annual scale. Our results show that internal nutrient cycling helps sustain CyanoHABs in Taihu, despite reductions in external nutrient inputs. Furthermore, N is leaving the lake faster than P, thereby creating persistent N limitation. Therefore, parallel reductions in external N loading, along with P, will be most effective in reducing CyanoHABs and accelerate the recovery process in this and other large, shallow lakes.