The discovery of carbonate gas fields in the Middle Triassic Leikoupo Formation of the Sichuan Basin has a complex history. In recent years, a series of structural fields have been discovered in the western Sichuan Basin. Their discovery confirms the immense exploration potential of the Leikoupo Formation. In this study, we analyze the characteristics of Leikoupo Formation exploration plays using exploration wells and test data, aiming to provide a reference for further discoveries. The Leikoupo Formation represents the uppermost unit in the Sichuan marine carbonate platform succession. During its deposition, the whole basin was characterized by a restricted and evaporitic platform. Two classes of reservoirs developed. One is pore–fracture reservoirs, in marginal platform and intraplatform shoals, and another is fracture–vug reservoirs in the karstic weathering crust of the formation-capping unconformity. Three hydrocarbon accumulation models were established for the Leikoupo Formation based on the spatial and temporal relationship among the source, reservoir, and cap rocks. Two types of exploration plays are present in the Leikoupo Formation, that is, shoal (including intraplatform shoal and marginal platform shoal) dolomite plays and karstic dolomite weathering crust plays (including intraplatform shoal karst and marginal platform shoal karst). The western Sichuan depression in the karstic slope belt presents immense exploration potential because of a proximal hydrocarbon supply, charging via an extensive fracture network, shoals and karstic reservoir, a good seal rock of terrestrial mudstone, and potential composite hydrocarbon accumulations in stratigraphic traps, making it a promising area for future exploration.
Well W117 in the Sichuan Basin reveals a suite of ~814 Ma quartz monzonites, unconformably overlain by Sinian clastic and carbonate sediments. The quartz monzonites contain no muscovite and amphibole, and are characterized by high SiO2 (72.26-77.93%), total alkali, and TFe2O3/MgO content, and low P2O5 and CaO abundance, with variable A/CNK ratio (0.93-1.19), classified as metaluminous to weakly aluminous highly fractionated I-type granites. They are preserved in the Neoproterozoic rift and exhibit restricted negative εNd(t) values (-7.0 to -5.2) and variable zircon εHf(t) values (-13.9 to 2.3), suggesting their generation via melting of both ancient and juvenile crustal materials in an extensional setting. Their parent magmas were formed in a low-temperature condition (831-650 °C) and finally emplaced at ca. 9-10 km below the surface, indicating that the intrusion underwent exhumation before the deposition of Sinian sag basin. Such geological processes, together with evidence for Neoproterozoic structures in the surrounding area, support that the Upper Yangtze craton experienced two main phases of rifting from 830-635 Ma. The Well W117 granites and its overlying sediments record a geodynamic evolution from orogenic collapse to continental rifting, and to thermal subsidence, probably related to the Rodinia supercontinent breakup.