Bucharest, the capital of Romania with about 2.5 million inhabitants, is frequently struck by intense, damaging earthquakes (1940, 1977, 1986 & 1990). Within the framework of the Collaborative Research Centre 461 (CRC 461) Earthquakes A Challenge for Geosciences and Civil Engineering and the “Romanian Group for Strong Earthquakes” seismic wavefields were recorded continuously in Bucharest with broadband instruments for 9 months. During this URban Seismology (URS) project the KArlsruhe BroadBand Array (KABBA) with 32 mobile broadband stations was installed in the city centre and the periphery of Bucharest between October 2003 and August 2004. The aims of the field project are on one hand the recording of local, regional and teleseismic earthquakes and on the other hand the continuous acquisition of urban seismic noise. These data should serve as basis for comprehensive studies of the subsurface of Bucharest and the properties of the seismic wavefield in a major city. The analysis of recordings from regional intermediate-depth Vrancea earthquakes provides information on the properties of the related seismic wavefields, amplitude variations across the network, crustal structure from receiver functions and transfer functions of a ten-story tower building in Magurele. Teleseismic waves were used to study low-frequency amplitude variations as well as lithospheric structure from receiver functions and Love wave dispersion. Ambient seismic noise is analysed for site effects using the horizontal-over-vertical spectral ratio as well as to characterise the noise sources and their temporal behaviour. Here we summarise the main results, for further details we refer to the reference list.
Abstract Although ring faults are present at many ancient, deeply eroded volcanoes, they have been detected at only very few modern volcanic centers. At the so far little studied Tendürek volcano in eastern Turkey, we generated an ascending and a descending InSAR time series of its surface displacement field for the period from 2003 to 2010. We detected a large (~105 km 2 ) region that underwent subsidence at the rate of ~1 cm/yr during this period. Source modeling results show that the observed signal fits best to simulations of a near‐horizontal contracting sill located at around 4.5 km below the volcano summit. Intriguingly, the residual displacement velocity field contains a steep gradient that systematically follows a system of arcuate fractures visible on the volcano's midflanks. RapidEye satellite optical images show that this fracture system has deflected Holocene lava flows, thus indicating its presence for at least several millennia. We interpret the arcuate fracture system as the surface expression of an inherited ring fault that has been slowly reactivated during the detected recent subsidence. These results show that volcano ring faults may not only slip rapidly during eruptive or intrusive phases, but also slowly during dormant phases.
The geometry of the volcanic conduit is a main parameter controlling the dynamics and the style of volcanic eruptions and their precursors, but also one of the main unknowns. Pre-eruptive signals that originate in the upper conduit region include seismicity and deformation of different types and scales. However, the locality of the source of these signals and thus the conduit geometry often remain unconstrained at steep sloped and explosive volcanoes due to the sparse instrumental coverage in the summit region and difficult access. Here we infer the shallow conduit system geometry of Volcán de Colima, Mexico, based on ground displacements detected in high resolution satellite radar data up to seven hours prior to an explosion in January 2013. We use Boundary Element Method modeling to reproduce the data synthetically and constrain the parameters of the deformation source, in combination with an analysis of photographs of the summit. We favour a two-source model, indicative of distinct regions of pressurization at very shallow levels. The location of the upper pressurization source coincides with that of post-explosive extrusion; we therefore attribute the displacements to transient (elastic) pre-explosive pressurization of the conduit system. Our results highlight the geometrical complexity of shallow conduit systems at explosive volcanoes and its effect on the distribution of pre-eruptive deformation signals. An apparent absence of such signals at many explosive volcanoes may relate to its small temporal and spatial extent, partly controlled by upper conduit structures. Modern satellite radar instruments allow observations at high spatial and temporal resolution that may be the key for detecting and improving our understanding of the generation of precursors at explosive volcanoes.
The Pamir orogen, Central Asia, is the result of the ongoing northward advance of the Indian continent causing shortening inside Asia. Geodetic and seismic data place the most intense deformation along the northern rim of the Pamir, but the recent 7 December 2015, M w 7.2 Sarez earthquake occurred in the Pamir's interior. We present a distributed slip model of this earthquake using coseismic geodetic data and postseismic field observations. The earthquake ruptured an ∼80 km long, subvertical, sinistral fault consisting of three right‐stepping segments from the surface to ∼30 km depth with a maximum slip of three meters in the upper 10 km of the crust. The coseismic slip model agrees well with en échelon secondary surface breaks that are partly influenced by liquefaction‐induced mass movements. These structures reveal up to 2 m of sinistral offset along the northern, low‐offset segment of modeled rupture. The 2015 event initiated close to the presumed epicenter of the 1911 M w ∼7.3 Lake Sarez earthquake, which had a similar strike‐slip mechanism. These earthquakes highlight the importance of NE trending sinistral faults in the active tectonics of the Pamir. Strike‐slip deformation accommodates shear between the rapidly northward moving eastern Pamir and the Tajik basin in the west and is part of the westward (lateral) extrusion of thickened Pamir plateau crust into the Tajik basin. The Sarez‐Karakul fault system and the two large Sarez earthquakes likely are crustal expressions of the underthrusting of the northwestern leading edge of the Indian mantle lithosphere beneath the Pamir.
Abstract We report on a multi-technique analysis using publicly available data for investigating the huge, accidental explosion that struck the city of Beirut, Lebanon, on August 4, 2020. Its devastating shock wave led to thousands of injured with more than two hundred fatalities and caused immense damage to buildings and infrastructure. Our combined analysis of seismological, hydroacoustic, infrasonic and radar remote sensing data allows us to characterize the source as well as to estimate the explosive yield. The latter is determined within 0.13 to 2 kt TNT (kilotons of trinitrotoluene). This range is plausible given the reported 2.75 kt of ammonium nitrate as explosive source. As there are strict limitations for an on-site analysis of this catastrophic explosion, our presented approach based on data from open accessible global station networks and satellite missions is of high scientific and social relevance that furthermore is transferable to other explosions.
<p>Large magnitude (Mw &#8764; &#8805;6) earthquakes in extensional settings are often associated with simultaneous rupture of multiple normal faults as a result of static and/or dynamic stress transfer. Here, we report details of the coseismic breaching of a previously unrecognized large-scale fault relay zone in central Greece, through three successive normal fault earthquakes of moderate magnitude (Mw 5.7&#8211;6.3) that occurred over a period of &#8764;10 days in March 2021. Specifically, joint analysis of InSAR, GNSS and seismological data, coupled with detailed field and digital fault mapping, reveals that the Tyrnavos Earthquake Sequence (TES) was accommodated at the northern end of a &#8764;100 km wide transfer structure, by faults largely unbroken during the Holocene. By contrast, the southern section of this relay zone appears to have accrued significant slip during Holocene. InSAR-derived displacements agree with the loci of eight subtle, previously undetected, faults that accommodated coseismic and/or syn-seismic normal fault slip during the TES. Kinematic modeling coupled with fault mapping suggests that all involved faults are interconnected at depth, with their conjugate fault-intersections acting largely as barriers to coseismic rupture propagation. We also find that the TES mainshocks were characterized by unusually high (>6 MPa) stress-drop values that scale inversely with rupture length and earthquake magnitude. These findings, collectively suggest that the TES propagated north-westward to rupture increasingly stronger asperities at fault intersections, transferring slip between the tips of a well-established, but previously unrecognized, relay structure. Fault relay zones may be prone to high stress-drop earthquakes and associated elevated seismic hazard.</p>
<p>Crustal earthquakes are events of sudden stress release throug&#173;h rock failure, for example as a consequence of continuous and long-term stress buildup at tectonic faults that eventually exceeds the strength of rock. Before failure, under increasing stress at a fault, the surrounding crust is slowly deforming. The amount and pattern of crustal deformation carries information about location and potential magnitude of future earthquakes.</p><p>Time series of space-borne interferometric Synthetic Aperture Radar (InSAR) data can be used to precisely measure the surface motion, which corresponds to the crustal deformation, in the radar line-of-sight and across large areas. These observations open the opportunity to study fault loading in terms of location, size of locked parts at faults and their slip deficit. Here we study the North Anatolian Fault (NAF), a major right-lateral strike-slip fault zone of about 1500 km length in the north of Turkey and we create its first large-scale 3D finite-fault model based on InSAR data.</p><p>We use the InSAR time series of data recorded by ESA&#8217;s Envisat SAR satellite between 2002 and 2010 (Hussain et al., 2018 and Walters et al., 2014).<!-- Das ist nicht ganz eindeutig formuliert. rigid motion darf nicht auf die InSAR Daten bezogen werden. --> We represent the fault with several vertical, planar fault segments that trace the NAF with reasonable resolution. The medium model is a layered half space with a viscoelastic lower crust and mantle. Several GNSS velocity measurements are used to apply a trend correction and calibrate the InSAR time series data to an Eurasia-fixed-reference frame. We use the plate motion difference of the Anatolian and the Eurasian plates calculated through an Euler pole to set up a back-slip finite-fault model. We then optimize the back-slip as the slip deficit, the width and the depth of the locked fault zone at each segment to achieve a good fit to the measured surface motion.</p><p>We find shallow locking depths and small slip deficits in the eastern and westernmost regions of the NAF, while the central part shows both deeper locking depths and larger slip deficits for the observation period. <!-- So wie es jetzt ist sind es zu viele W&#246;rter, wenn man diesen erkl&#228;r-Satz rausnehmen w&#252;rde, w&#252;rde es gerade so passen. F&#252;r die Erdbebenaktivit&#228;t im Osten hab ich bis jetzt f&#252;r den Zeitraum auch noch kein entsprechendes Paper gefunden, da suche ich aber noch. -->For both parameters the trends are in an overall agreement to earlier studies. There, InSAR-time series data have been used to calculate slip deficits at the North Anatolian fault with 2D models and/or assuming a homogeneous and purely elastic medium.<!-- Passt vom flow jetzt besser hier hin, denke ich. --> Local modeled differences therefore might be connected to differences in the modeling approaches, but also remain subject to further investigations and discussions.</p><p>Our model provides a very suitable basis for future time-dependent modeling of the slip deficit at the NAF that includes also more recent InSAR time series based on data from the Sentinel-1 radar satellite mission of ESA.</p>