The Earth surface thermal infrared (TIR) radiation shows conspicuously an anisotropic behavior just like the bi-directional reflectance of visible and near infrared spectral domains. The importance of thermal radiation directionality (TRD) is being more and more widely recognized in the applications because of the magnitude of the effects generated. The effects of TRD were originally evidenced through experiments in 1962, showing that two sensors simultaneously measuring temperature of the same scene may get significantly different values when the viewing geometry is different. Such effect limits inter-comparison of measurement datasets and land surface temperature (LST) products acquired at different view angles, while raising the question of measurement reliability when used to characterize land surface processes. These early experiments fostered the development of modeling approaches to quantify TRD with the aim of developing a correction for Earth surface TIR radiation. Initiatives for pushing the analysis of TIR data through modeling have been lasted since 1970s. They were initially aimed at mimicking the observed TIR radiance with consideration of canopy structure, component emissivities and temperatures, and Earth surface energy exchange processes. Presently, observing the Earth surface TRD effect is still a challenging task because the TIR status changes rapidly. Firstly, a brief theoretical background and the basic radiative transfer equation are presented. Then, this paper reviews the historical development and current status of observing TRD in the laboratory, in-situ, from airborne and space-borne platforms. Accordingly, the TRD model development, including radiative transfer models, geometric models, hybrid models, 3D models, and parametric models are reviewed for surfaces of water, ice and sea, snow, barren lands, vegetation and urban landscapes, respectively. Next, we introduce three potential applications, including normalizing the LST products, estimating the hemispheric upward longwave radiation using multi-angular TIR observations and separating surface component temperatures. Finally, we give hints and directions for future research work. The last section summarizes the study and stresses three main conclusions.
Some bio-physical parameters(e.g.leaf area index,LAI) are often inverted using remote sensing data for its large cover scope,high temporal and spatial resolution.The common way of mapping LAI is through the inversion of physically based canopy-reflectance(CR) models using the optimization methods.The information of remote sensing data is usually not enough for the LAI inversion;furthermore,the inversion problem is ill-posed because of many unknown parameters and the relatively insufficient information in remote sensing data.It is necessary to make suitable inversion strategy(such as which parameter(s) should be inverted) for high accuracy of parameters estimation.We should learn the factors which affect the inversion result in order to design the suitable inversion strategy.Different from the research of parameter sensitivity for suitable inversion strategy,we made progress in the inversion process.For the information of the inversion process,some key points are needed to investigate,such as the factors affecting the parameters estimation,the mutual effect of different parameters in inversion process and so on.In the paper,we investigated the factors which affect the parameter estimation from the inversion process aiming at directing the parameter inversion.One of the accuracy indices for the inversion result is the root mean square error(RMSE).For the inversion result,the smaller RMSE is,the higher inversion accuracy is.We investigated the formulae of the RMSE based on the physically based canopy-reflectance model.Through mathematical formulae and physical mechanism,we can know that the factors affecting the RMSE consist of canopy reflectance data quality,the sensitivity of parameters and the correlation of the parameter sensitivity.That is to say,as to the sensitivity of parameters,not only the parameter sensitivity but the correlation of the parameter sensitivity the factors affect the parameters inversion accuracy.In other words,the relative sensitivity of the parameter has effect on the parameter inversion.We should make two kinds of progress for high accuracy parameter inversion.One is about the quality of canopy reflectance data.Remote sensing data are often contaminated with noise from various sources,such as radiation calibration,atmosphere correction,geometric registration and some random noises.The other is the sensitivities of the parameters and the correlation of the parameter sensitivity.We can make the suitable inversion strategy based on both the quality of the canopy reflectance data and the parameters sensitivities.The CR model is the SAIL model and the inversion method is the modified least square method in this paper.We validated the factors which affect the LAI inversion accuracy through LAI inversion based on simulated CR data sets.
In rugged area, the solar radiance is accepted by the sensor after a complicated interactive process between solar incidence, atmosphere and earth surface target. In this paper radiance received by one earth target is analyzed. Solar direct radiance, sky diffuse radiance and background terrain reflective radiance were obtained using a fit model. Combined with radiative transfer code and bi-directinal reflectance factor, atmospheric and topographic effects of Landsat/TM that covers Jiangxi rugged area had been eliminated. Several criterions were taken as the correction result validation. This paper shows that the method has robust atmospheric and topographic correction ability.
Optical remote sensing allows to efficiently monitor forest ecosystems at regional and global scales. However, most of the widely used optical forward models and backward estimation methods are only suitable for forest canopies in flat areas. To evaluate the recent progress in forest remote sensing over complex terrain, a satellite-airborne-ground synchronous Fine scale Optical Remote sensing Experiment of mixed Stand over complex Terrain (FOREST) was conducted over a 1 km×1 km key experiment area (KEA) located in the Genhe Reserve Areain 2016. Twenty 30 m×30 m elementary sampling units (ESUs) were established to represent the spatiotemporal variations of the KEA. Structural and spectral parameters were simultaneously measured for each ESU. As a case study, we first built two 3D scenes of the KEA with individual-tree and voxel-based approaches, and then simulated the canopy reflectance using the LargE-Scale remote sensing data and image Simulation framework over heterogeneous 3D scenes (LESS). The correlation coefficient between the LESS-simulated reflectance and the airborne-measured reflectance reaches 0.68–0.73 in the red band and 0.56–0.59 in the near-infrared band, indicating a good quality of the experiment dataset. More validation studies of the related forward models and retrieval methods will be done.
Surface upward longwave radiation (SULR) is one of the four components of the surface radiation budget, which is defined as the total surface upward radiative flux in the spectral domain of 4-100 μm. The SULR is an indicator of surface thermal conditions and greatly impacts weather, climate, and phenology. Big Earth data derived from satellite remote sensing have been an important tool for studying earth science. The Advanced Baseline Imager (ABI) onboard the Geostationary Operational Environmental Satellite (GOES-16) has greatly improved temporal and spectral resolution compared to the imager sensor of the previous GOES series and is a good data source for the generation of high spatiotemporal resolution SULR. In this study, based on the hybrid SULR estimation method and an upper hemisphere correction method for the SULR dataset, we developed a regional clear-sky land SULR dataset for GOES-16 with a half-hourly resolution for the period from 1st January 2018 to 30th June 2020. The dataset was validated against surface measurements collected at 65 Ameriflux radiation network sites. Compared with the SULR dataset of the Global LAnd Surface Satellite (GLASS) longwave radiation product that is generated from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard the polar-orbiting Terra and Aqua satellites, the ABI/GOES-16 SULR dataset has commensurate accuracy (an RMSE of 15.9 W/m2 vs 19.02 W/m2 and an MBE of −4.4 W/m2 vs −2.57 W/m2), coarser spatial resolution (2 km at nadir vs 1 km resolution), less spatial coverage (most of the Americas vs global), fewer weather conditions (clear-sky vs all-weather conditions) and a greatly improved temporal resolution (48 vs 4 observations a day). The published data are available at http://www.dx.doi.org/10.11922/sciencedb.j00076.00062.
The present paper firstly points out the defect of typical temperature and emissivity separation algorithms when dealing with hyperspectral FTIR data: the conventional temperature and emissivity algorithms can not reproduce correct emissivity value when the difference between the ground-leaving radiance and object's blackbody radiation at its true temperature and the instrument random noise are on the same order, and this phenomenon is very prone to occur rence near 714 and 1 250 cm(-1) in the field measurements. In order to settle this defect, a three-layer perceptron neural network has been introduced into the simultaneous inversion of temperature and emissivity from hyperspectral FTIR data. The soil emissivity spectra from the ASTER spectral library were used to produce the training data, the soil emissivity spectra from the MODIS spectral library were used to produce the test data, and the result of network test shows the MLP is robust. Meanwhile, the ISSTES algorithm was used to retrieve the temperature and emissivity form the test data. By comparing the results of MLP and ISSTES, we found the MLP can overcome the disadvantage of typical temperature and emisivity separation, although the rmse of derived emissivity using MLP is lower than the ISSTES as a whole. Hence, the MLP can be regarded as a beneficial complementarity of the typical temperature and emissivity separation.
Unlike ERS1/2 and JASON1, ENVISAT RA2 provides the backscatter coefficient from four retrackers (Ocean, Ice1, Ice2, Sealce), which is useful to study the behavior of RA2 backscatter over land. This paper presented an analysis of RA2 four Ku band backscatter performance over global, especially over vegetated area, and provided a detailed comparison with JASON1 data. The temporal evolution of the RA2 backscatter coefficients was evaluated for main vegetation type (ENF, EBF, DNF, DBF, mixed forest, croplands, savannas, grasslands) from October 2004 to June 2009. Results indicated that SigmaO values from four retrackers show large variability. The backscatter of Ice1 and Sealce retrackers are systematic larger than that of the Ocean and Sealce. The inter-comparison with JASON1 showed that the greatest degree of correlation of the RA2 SigmaO with JASON1 is obtained with Ice1 and Sealce.
This paper presents an algorithm to retrieve land surface temperature (LST) and emissivity by integrating MODIS (Moderate Resolution Imaging Spectroradiometer) data onboard Terra and Aqua satellites. For a study area, there will be four pairs of day and night observations by MODIS onboard two satellites every day. Solar zenith angle, view zenith angle, and atmospheric water vapour have first been taken as independent variables to analyse their sensitivities to the same infrared channel measurements of MODIS on both Terra and Aqua satellites. Owing to their similar influences on the same MODIS band from Terra and Aqua satellites, four pairs of MODIS data from Terra and Aqua satellites can be thought of as MODIS measurement on a satellite at different viewing angles and viewing time. Comparisons between the retrieved results and in-situ measurements at three test sites (Qinghai Lake, Poyang Lake and Luancheng in China) indicate that the root mean square (rms) error is 0.66 K, except for the sand in Poyang Lake area. The rms error is less than 0.7 K when the retrieved results are compared with Earth Observing System (EOS) MODIS LST data products using the physics-based day/night algorithm. Emissivities retrieved by this algorithm are well compared to EOS MODIS emissivity data products (V5). The proposed algorithm can therefore be regarded as complementary and an extension to the EOS physics-based day/night algorithm.
We compare five slope correction methods developed by Walter et al., Montes et al., Schleppi et al., España et al., and Gonsamo et al. (referred to as WAL, MON, SCH, ESP, and GON, respectively) using artificial fisheye pictures simulated by graphics software and a lookup table (LUT) retrieval method. The LUT is built by simulating the directional gap fraction as a function of leaf area index (LAI) and average leaf inclination angle (ALIA) using the Poisson law. LAI and ALIA estimates correspond to the case of the LUT that provides the lowest root-mean-square error between the observed gap fractions after slope correction and the simulated ones. Three LAI values (1.5, 3.5, and 5.5), four ALIA values (26.8°, 45°, 57.5°, and 63.2°), and three slope angles (0°, 20°, and 50°) constituted 36 samples of random scenes. ESP is recommended because its results are accurate and independent on the leaf angle distribution (LAD), while GON only performs well for spherical LAD. The three other methods present less good performances with underestimation or overestimation of LAI and/or ALIA depending on the LAD, and the recommended order for them is MON, SCH, and WAL.