An analysis-of-variance experiment of zircon crystal size and shape measurements shows that variability between operators is not a significant factor in distinguishing between morphology classes of zircon crystals from a single rock.
Article MetricsDownloadsCitationsNo data available.01234JulAugSepOctNovDec290Total6 Months12 MonthsTotal number of downloads for the most recent 6 whole calendar months.
Glass spherules show multiple high-velocity impact craters and are coated with small particles including glass, plagioclase, clinopyroxene, ilmenite, olivine, chromite, rock fragments, and frozen droplets of iron, nickel-iron, and troilite. These spherules passed through an impact cloud of hot fragmental material, condensing iron-rich vapor and high-velocity projectiles. Breccia contains concentric, accretionary lapilli units and appears to be a sintered deposit from a hot lunar base surge generated by impact.
Two drive-tube core samples were obtained at Tranquillity Base. Fines include much glass, are unweathered, medium gray, loose, nonstructured, very weakly coherent, and demonstrate both accumulation and mixing in a waterless vacuum environment. In contrast to chemical weathering characteristic on the earth, lunar alteration processes are primarily mechanical. We infer that environmental processes of the lunar surface may be expressed as follows: R (regolith) = f(cl, p, r, t, b, a, . . .), in which climate (cl) is constant and the time (t)-de-pendent processes of bombardment (b) and accumulation (a) assume significance unparalleled on the earth because of their effects on parent material (p) and relief (r).
The application of the Structure-from-Motion (SfM) methodology, as enabled by the growth of Unmanned Aerial Vehicle (UAV) technology, is expected to have significant impact in geotechnical engineering research and practice. SfM outputs are presented using selected geotechnical projects as examples, and include orthophotos, 3D point clouds, and three dimensional digital surface or terrain models. Repeated surveys allow for monitoring of deformation patterns at a cm-level resolution. The lessons learned from the application of the methodology at twenty-six sites that cover the breadth of geotechnical engineering practice, located in four countries (USA, Greece, Nepal, and New Zealand) and variable geologic environments are presented. It is shown that the methodology leads to an unprecedented level of mapping that covers large areas at high resolution. In addition to the high resolution models, SfM models are shown to be comparable in accuracy to other surveying techniques and mapping technologies such as light detection and ranging (LiDAR). The advantages and disadvantages of the methodology are also presented with the intent to facilitate the greater incorporation of this methodology in geotechnical engineering. The use of UAVs makes the methodology especially appealing for immediate post-disaster response as it enables the collection of optical data in areas that are inaccessible or unsafe.
Two main subdivisions of layered rocks are recognized in the southern Arabian Shield south of lat 22? N. These are an older ensimatic-arc complex, which formed 1100-800 m.y. ago, and a younger marginal-arc complex, which formed 800-690 m.y. ago. The older ensimatic-arc complex, located in the southwestern part of the Shield, includes graywacke and mafic to intermediate volcanic rocks of the essentially contemporaneous Baish, Bahah, and Jiddah groups. Although the younger arc complex is also dominantly ensimatic in character, it is also partly superimposed over the older ensimaticarc complex. The superimposed portions of the younger arc complex are represented by the Ablah, Samran, and possibly the Ararat groups. The ensimatic portion of the younger arc group is represented by the Halaban group, which was deposited to the east and northeast of the older ensimatic-arc complex. The Halaban group includes andesitic and dacitic volcanic rocks and associated clastic sedimentary rocks. The layered rocks of both arc complexes are intruded by dioritic (quartz diorite, tonalite, trondhjemite) plutonic rocks. The southern Shield is also subdivided into a number of structurally bounded, north-trending tectonic belts. Within the older ensimatic complex, three belts are recognized. From west to east, these are the Lith, Bidah, and Tayyah belts. Within these three belts, progressive facies changes indicate a gradation from deep-water facies in the south to shallow-water or-terrestrial facies in the north. The distribution of dioritic batholiths, as well as the distribution of layered-rock facies, suggests a northwest-trending axis for the older ensimatic-arc complex. The younger arc complex is present within six belts, the Makkah source papers. In Fleck and others (1980), the term 'quartz diorite' includes both tonalite and quartz diorite as defined in the International Union of Geological Sciences (IUGS) system of plutonic rock classification (Streckeisen, 1973). Initial 87Sr/86Sr ratios are not included in the appendix, but all rocks more than 660 m.y. old have initial ratios in the range 0.7021-0.7035, with only two greater than 0.7030. Thus, nothing in the Rb-Sr data suggests involvement of an older continental crust during the evolution of the southern Shield. A lead isotope study of ore minerals and potassium feldspars of the Arabian Shield by Stacey and others (1980) also suggests that no older (Archean to early Proterozoic) evolved continental-type crust underlies the southern Shield. An early summary of mapping (Schmidt and others, 1973) suggests that older sialic basement underlies the late Proterozoic layered rocks in the southern Shield. However, subsequent-mapping and the isotopic studies cited above have established that all of these rocks are of late Proterozoic age and that all rocks of the southern Shield that are more than 660 m.y. old have ensimatic or mantle isotopic characteristics. Figure 2 shows, with only two exceptions, that rocks more than 800 m.y. old are present west of the boundary separating the Tayyah and Khadra belts. The exceptions are two poorly controlled Rb-Sr ages obtained by Fleck (1980) on two quartz diorite plutons in the Malahah region (appendix 1, localities 26 and 27). Preliminary uranium-thorium zircon data of Stacey now suggest that one of these quartz diorite plutons (locality 26) has an age of approximately 640 m.y. Therefore, we prefer to discount the two dates of Fleck until further information is available. As noted earlier and as described below, most of the rocks of the southern Arabian Shield have characteristics typical of those formed in the island-arc environment by subduction-related processes. We shall refer to the group of rocks in the western part of the southern Shield, which formed from 1100 to 800 m.y. ago, as the 'older ensimatic-arc complex' and those in the eastern and northwestern parts, which formed from 800 to 690 m.y. ago, as the 'younger marginal-arc compl
A troilite-rich nickel-iron particle ("mini-moon") recovered from the moon may be a mound detached from a sphere of silicate glass. Erosion and pitting of the particle may have been caused by passage through a cloud of hot gas and particulate matter formed by meteorite impact on the lunar surface. This explanation is in contrast to the theory that the particle was meteoritically derived molten material that was furrowed during solidification after lunar impact, subsequently pitted by high-velocity particles, and then abraded and polished by drifting dust while on the lunar surface.