Abstract The detrital zircon perspective on the pre-collisional crustal evolution of the Grenville Province remains poorly explored. In this study, we conducted in situ laser ablation U–Pb–Hf isotopic microanalysis on detrital zircon grains from three pre-orogenic (>1 Ga) supracrustal sequences that crop out in the Central Grenville Province (Lac Saint-Jean region, QC, CA). Detrital zircon grains from vestiges of these sequences record three dominant age peaks at c. 1.46 Ga, 1.62 Ga, 1.85 Ga, and a subordinate peak at 2.7 Ga. The 1.46 Ga and 1.62 Ga age peaks are recorded in detrital zircon grains from a quartzite associated with a metavolcanic sequence (i.e. Montauban Group) with a maximum depositional age of c. 1.44 Ga. In contrast, the c. 1.85 Ga age peak is observed from recycled zircon grains in metasediments with maximum depositional ages between 1.2 and 1.3 Ga. The suprachondritic Hf isotope composition in detrital zircon grains of the 1.46 Ga and 1.62 Ga age populations records juvenile crustal growth during peri-Laurentian accretionary orogenesis related to the Pinwarian (1.4–1.5 Ga) and Mazatzalian–Labradorian (1.6–1.7 Ga) events. The detrital zircon grains associated with Penokean–Makkovikian (1.8–1.9 Ga) source rocks record reworking of c. 2.7 Ga continental crust derived from a near-chondritic mantle reservoir. Overall, crust-forming and basement reworking events associated with accretionary orogenesis in southeastern Laurentia are retained in the detrital zircon load of Precambrian basins even after the terminal Grenvillian collision and assembly of Rodinia.
Abstract The post‐impact orogenic evolution of the world class Ni–Cu– PGE Sudbury mining camp in Ontario remains poorly understood. New temporal constraints from ore‐controlling, epidote–amphibolite facies shear zones in the heavily mineralised Creighton Mine (Sudbury, South Range) illuminate the complex orogenic history of the Sudbury structure. In situ U–Pb dating of shear‐hosted titanite grains by LA ‐ ICP ‐ MS reveals new evidence for shear zone reworking during the Yavapai (ca. 1.77–1.7 Ga), Mazatzalian–Labradorian (1.7–1.6 Ga) and Chieflakian–Pinwarian (1.5–1.4 Ga) accretionary events. The new age data show that the effects of the Penokean orogeny (1.9–1.8 Ga) on the structural architecture of the Sudbury structure have been overestimated. At a regional scale, the new titanite age populations corroborate that the Southern Province of the Canadian Shield documents the same tectonothermal episodes that are recorded along orogenic strike within the accretionary provinces of the Southwestern United States.
The tectonic significance of the Muness Phyllite, which overlies the Unst–Fetlar ophiolite in Shetland, Scottish Caledonides, is poorly understood. U–Pb analyses of detrital zircons show that it was deposited after c . 469 Ma. Early Paleozoic grains have ε Hf values of −0.3 to +12.3 and were probably derived from the extension of the Midland Valley arc. Psammite clasts and the matrix of the Muness Phyllite contain Proterozoic and Archean detrital zircons with age peaks of c . 1, 1.4–1.5, 1.6–1.7, 1.8–1.9 and 2.7 Ga. These are consistent with ultimate derivation from NE Laurentia sources and were probably recycled from the Neoproterozoic East Mainland Succession that underlies the Mesozoic East Shetland Basin. The Muness Phyllite is interpreted to have been deposited soon after the Grampian I orogeny in a successor basin that overstepped and received detritus from the Midland Valley arc, the East Mainland Succession and the Unst–Fetlar ophiolite. It was then deformed and metamorphosed, probably at c. 450 Ma during the Grampian II orogenic event. The Muness Phyllite therefore provides a record of middle to late Ordovician tectonic events along the Scottish sector of the Laurentian margin following ophiolite obduction. Supplementary material: Analytical details and instrumentation parameters and U–Pb and Lu–Hf isotopic data are available at https://doi.org/10.6084/m9.figshare.c.5324986