logo
    Polyorogenic reworking of ore‐controlling shear zones at the South Range of the Sudbury impact structure: A telltale story from in situ U–Pb titanite geochronology
    13
    Citation
    31
    Reference
    10
    Related Paper
    Citation Trend
    Abstract:
    Abstract The post‐impact orogenic evolution of the world class Ni–Cu– PGE Sudbury mining camp in Ontario remains poorly understood. New temporal constraints from ore‐controlling, epidote–amphibolite facies shear zones in the heavily mineralised Creighton Mine (Sudbury, South Range) illuminate the complex orogenic history of the Sudbury structure. In situ U–Pb dating of shear‐hosted titanite grains by LA ‐ ICP ‐ MS reveals new evidence for shear zone reworking during the Yavapai (ca. 1.77–1.7 Ga), Mazatzalian–Labradorian (1.7–1.6 Ga) and Chieflakian–Pinwarian (1.5–1.4 Ga) accretionary events. The new age data show that the effects of the Penokean orogeny (1.9–1.8 Ga) on the structural architecture of the Sudbury structure have been overestimated. At a regional scale, the new titanite age populations corroborate that the Southern Province of the Canadian Shield documents the same tectonothermal episodes that are recorded along orogenic strike within the accretionary provinces of the Southwestern United States.
    Keywords:
    Titanite
    Geochronology
    Orogeny
    The timing of peak Grampian metamorphism is well constrained from the detrital record of the adjacent fore-arc basin fill and geochronology of synorogenic intrusive rocks, but the onset of collision is less certain. Proximal Silurian conglomerates contain plagiogranite boulders unequivocally derived from the Lough Nafooey arc, two of which yield U–Pb secondary ionization mass spectrometry zircon ages of 489.9 ± 3.1 Ma and 487.8 ± 2.3 Ma. Nd isotopic evidence (ϵ Nd(490) c . 0) demonstrates that the plagiogranites assimilated significant amounts of old continental crust. This provides an absolute age constraint on a previously poorly constrained and inferred event, demonstrating that the arc had encountered subducting Laurentian margin sediments by 490 Ma.
    Geochronology
    Orogeny
    Back-arc basin
    Citations (52)