Abstract. Afforestation is a strategy to sequester atmospheric carbon in the terrestrial system and to enhance ecosystem services. Iceland's large areas of formerly vegetated and now degraded ecosystems therefore have a high potential to act as carbon sinks. Consequently, the ecological restoration of these landscape systems is part of climate mitigation programmes supported by the Icelandic government. The aim of this study was to explore the change in the soil organic carbon (SOC) pools and to estimate the SOC sequestration potential during the re-establishment of birch forest on severely degraded land. Differently aged afforested mountain birch sites (15, 20, 25 and 50 years) were compared to sites of severely degraded land, naturally growing remnants of mountain birch woodland and grasslands which were re-vegetated using fertilizer and grass seeds 50 years ago. The soil was sampled to estimate the SOC stocks and for physical fractionation to characterize the quality of the SOC. The results of our study show that the severely degraded soils can potentially sequester an additional 20 t C ha−1 (0–30 cm) to reach the SOC stock of naturally growing birch woodlands. After 50 years of birch growth, the SOC stock is significantly lower than that of a naturally growing birch woodland, suggesting that afforested stands could sequester additional SOC beyond 50 years of growth. The SOC fractionation revealed that at all the tested sites most of the carbon was stored in the <63 µm fraction. However, after 50 years of birch growth on severely degraded soils the particulate organic matter (POM) fraction was significantly enriched most (+12 t POM-C ha−1) in the top 30 cm. The study also found a doubling of the dissolved organic carbon (DOC) concentration after 50 years of birch growth. Therefore and due to the absence of any increase in the tested mineral-associated SOC fractions, we assume that the afforestation process evokes a carbon deposition in the labile SOC pools. Consequently, parts of this plant-derived, labile SOC may be partly released into the atmosphere during the process of stabilization with the mineral soil phases in the future. Our results are limited in their scope since the selected sites do not fully reflect the heterogeneity of landscape evolution and the range of soil degradation conditions. As an alternative, we suggest using repeated plot measurements instead of space-for-time substitution approaches for testing C changes in severely degraded volcanic soils. Our findings clearly show that detailed measurements on the SOC quality are needed to estimate the SOC sequestration potential of restoration activities on severely degraded volcanic soils, rather than only measuring SOC concentration and SOC stocks.
Abstract. Iceland is a highly active source of natural dust. Icelandic dust has the potential to affect directly the climate via dust-radiation interaction, and indirectly via dust-cloud interaction, snow/ice albedo effect and impacts on biogeochemical cycles. The impacts of Icelandic dust depend on its mineralogical and chemical composition. However, lack of data has prevented an accurate assessment of the role of Icelandic dust in the Earth system. Here, we collected surface sediment samples from five major Icelandic dust hotspots. Dust aerosols were generated and suspended in atmospheric chambers, and PM10 and PM20 fractions were collected for further analysis. We found that the dust samples primarily consist of amorphous basaltic material ranging from 8 wt% (from the Hagavatn hotspot) to 60–90 wt% (other hotspots). Samples had relatively high total Fe content (10–13 wt%). Sequential extraction of Fe to determine its chemical form shows that dithionite Fe (Fe oxides such as hematite and goethite) and ascorbate Fe (amorphous Fe) contribute respectively 1–6 %, and 0.3–1.4 % of the total Fe in Icelandic dust. The magnetite fraction is 7–15 % of total Fe and 1–2 wt% of PM10, which is orders of magnitude higher than in mineral dust from North Africa. Nevertheless, about 80–90 % of the Fe is contained in pyroxene and amorphous glass. The initial Fe solubility (ammonium acetate extraction at pH 4.7) is from 0.08–0.6 %, which is comparable to low latitude dust such as that from North Africa. The Fe solubility at low pH (i.e., 2) is significantly higher than typical low latitude dust (up to 30 % at pH 2 after 72 hrs). Our results revealed the fundamental differences in composition and mineralogy of Icelandic dust from low latitude dust. We attribute these differences to the low degree of chemical weathering, the basaltic composition of the parent sediments, and glacial processes. Icelandic dust contributes to the atmospheric deposition of soluble Fe and can impact primary productivity in the North Atlantic Ocean. The distinct chemical and mineralogical composition, particularly the high magnetite content (1–2 wt%), indicates a potentially significant impact of Icelandic dust on the radiation balance in the sub-polar and polar regions.
Abstract. In order to quantify the effects of absorbing contaminants on snow, a series of spectral reflectance measurements were conducted. Chimney soot, volcanic sand, and glaciogenic silt were deposited on a natural snow surface in a controlled way as a part of the Soot on Snow (SoS) campaign. The bidirectional reflectance factors of these soiled surfaces and untouched snow were measured using the Finnish Geodetic Institute's Field Goniospectropolariradiometer, FIGIFIGO. A remarkable feature is the fact that the absorbing contaminants on snow enhanced the metamorphism of snow under strong sunlight in our experiments. Immediately after deposition, the contaminated snow surface appeared darker than the natural snow in all viewing directions, but the absorbing particles sank deep into the snow in minutes. The nadir measurement remained the darkest, but at larger zenith angles, the surface of the contaminated snow changed back to almost as white as clean snow. Thus, for a ground observer the darkening caused by impurities can be completely invisible, overestimating the albedo, but a nadir-observing satellite sees the darkest points, underestimating the albedo. Through a reciprocity argument, we predict that at noon, the albedo perturbation should be lower than in the morning or afternoon. When sunlight stimulates sinking more than melting, the albedo should be higher in the afternoon than in the morning, and vice versa when melting dominates. However, differences in the hydrophobic properties, porosity, clumping, or size of the impurities may cause different results than observed in these measurements.
Abstract. Dust particles emitted from high latitudes (≥ 50° N and ≥ 40° S, including Arctic as a subregion ≥ 60° N), have a potentially large local, regional, and global significance to climate and environment as short-lived climate forcers, air pollutants and nutrient sources. To understand the multiple impacts of the High Latitude Dust (HLD) on the Earth systems, it is foremost to identify the geographic locations and characteristics of local dust sources. Here, we identify, describe, and quantify the Source Intensity (SI) values using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM), for sixty-four HLD sources included in our collection in the Northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and Southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD dust sources show seasonal character. The environmental and climatic effects of dust on clouds and climatic feedbacks, atmospheric chemistry, marine environment, and cryosphere-atmosphere feedbacks at high latitudes are discussed, and regional-scale modelling of dust atmospheric transport from potential Arctic dust sources is demonstrated. It is estimated that high latitude land area with higher (SI ≥ 0.5), very high (SI ≥ 0.7) and the highest potential (SI ≥ 0.9) for dust emission cover >1 670 000 km2, >560 000 km2, and >240 000 km2, respectively. In the Arctic HLD region, land area with SI ≥ 0.5 is 5.5 % (1 035 059 km2), area with SI ≥ 0.7 is 2.3 % (440 804 km2), and with SI ≥ 0.9 it is 1.1 % (208 701 km2). Minimum SI values in the north HLD region are about three orders of magnitude smaller, indicating that the dust sources of this region are highly dependable on weather conditions. In the south HLD region, soil surface conditions are favourable for dust emission during the whole year. Climate change can cause decrease of snow cover duration, retrieval of glaciers, permafrost thaw, and increase of drought and heat waves intensity and frequency, which all lead to the increasing frequency of topsoil conditions favourable for dust emission and thereby increasing probability for dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify and assess the environmental and climate significance of HLD in the future.
Iceland border the Arctic with cold maritime climate and a large proportion of the land placed at highland plateaus. About 1100 years of human disturbance, such as grazing and wood harvesting, has left much of the island's ecosystems in a poor state, ranging from barren deserts to areas with altered vegetative composition and degraded soils. We constructed a novel resilience-based model (RBC-model) for current land condition in Iceland to test which and how factors, including elevation, slope characteristics, drainage, and proximity to volcanic activity, influence the resilience and stability of ecosystems to human disturbances. We tested the model by randomly placing 500 sample areas (250 x 250 m) all over the country and obtaining values for each factor and current land conditions for each area from existing databases and satellite images. Elevation and drainage explained the largest portions of variability in land condition in Iceland, while both proximity to volcanic activity and the presence of scree slopes also yielded significant relationships. Overall, the model explained about 65% of the variability. The model was improved (R2 from 0.65 to 0.68) when the country was divided into four broadly defined regions. Land condition at the colder northern peninsulas was poorer at lower elevations compared to inland positions. This novel RBC model was successful in explaining differences in present land condition in Iceland. The results have implication for current land use management, especially grazing, suggesting that management should consider elevation, drainage, slopes and location within the country in addition to current land condition.