Abstract We describe and show results from a series of field campaigns that used balloonborne instruments launched from India and Saudi Arabia during the summers 2014–17 to study the nature, formation, and impacts of the Asian Tropopause Aerosol Layer (ATAL). The campaign goals were to i) characterize the optical, physical, and chemical properties of the ATAL; ii) assess its impacts on water vapor and ozone; and iii) understand the role of convection in its formation. To address these objectives, we launched 68 balloons from four locations, one in Saudi Arabia and three in India, with payload weights ranging from 1.5 to 50 kg. We measured meteorological parameters; ozone; water vapor; and aerosol backscatter, concentration, volatility, and composition in the upper troposphere and lower stratosphere (UTLS) region. We found peaks in aerosol concentrations of up to 25 cm –3 for radii > 94 nm, associated with a scattering ratio at 940 nm of ∼1.9 near the cold-point tropopause. During medium-duration balloon flights near the tropopause, we collected aerosols and found, after offline ion chromatography analysis, the dominant presence of nitrate ions with a concentration of about 100 ng m –3 . Deep convection was found to influence aerosol loadings 1 km above the cold-point tropopause. The Balloon Measurements of the Asian Tropopause Aerosol Layer (BATAL) project will continue for the next 3–4 years, and the results gathered will be used to formulate a future National Aeronautics and Space Administration–Indian Space Research Organisation (NASA–ISRO) airborne campaign with NASA high-altitude aircraft.
Stratospheric aerosols contribute to the terrestrial radiative budget during large eruptive events but also during volcanic quiescent periods (Kremser et al. 2016). The survey of background stratospheric aerosols, especially in the middle stratosphere, is challenging due to extreme experimental conditions and low particle concentration. Furthermore, during periods of low volcanic activity, origins and optical properties of aerosols in the middle and high stratosphere are not well defined yet (Neely et al. 2011). We propose to study the capabilities of a new miniature particle counter called LOAC (Light Optical Aerosol Counter), light enough to be carried under meteorological balloons, whichensure a very good frequency of flights and designed to be able to measure and discriminate between several main aerosol types. The LOAC miniature particle counter has been initially designed for balloon-borne tropospheric studies (Renard et al. 2016).Metrological performances of the LOAC instrument have been determined in the laboratory and during balloon flights. Principal limitations of the use of LOAC in the stratosphere areinduced by the temperature variations and the influence of cosmic rays. A detection threshold has been determined in the laboratory to be of 0.8 particule.cm-3 in terms of concentration which also limits the use of LOAC in the stratosphere where aerosol concentrations during volcanic quiescent periods may be lower than this limit. Since June 2013, more than 100 hundred LOAC instruments have been launched under meteorological balloons during the ChArMEx and Voltaire-LOAC field campaigns. This dataset has been studied and compared to satellite records such as OSIRIS, OMPS, and CALIOPbut also to ground-based lidar data (NDACC lidar OHP) and outputs from the WACCM/CARMA model. Results show that large variations in stratospheric aerosols are well defined by satellite but less visible in LOAC records. Instrumental LOAC limitations in the stratosphere can explain some of the difference between remote sensing methods and in-situ measurements but suggest also that local variations in the stratospheric aerosol contents may exist during volcanic quiescent periods. Flights made through the Calbucoplume in stratosphere during the summer 2015 show that LOAC can describe distribution in size and particle concentrations in a perturbed lower stratosphere. In the stratosphere free of volcanic influence, an integration time of 10 minutes shows better results. Kremser et al. (2016) Stratospheric aerosol—Observations, processes, and impact on climate. Rev. Geophys. 54, 2015RG000511. doi:10.1002/2015RG000511 Neely, R.R., English, J.M., Toon, O.B., Solomon, S., Mills, M., Thayer, J.P., 2011. Implications of extinction due to meteoritic smoke in the upper stratosphere: EXTINCTION DUE TO METEORITIC SMOKE. Geophys. Res. Lett. 38, doi:10.1029/2011GL049865 Renard et al. (2016) LOAC: a small aerosol optical sounter/sizer for ground-based and balloon measurements AMT. 9, 1721-1742. doi:10.5194/amt-9-1724-2016
Abstract. After 43 years of inactivity, the Calbuco volcano, which is located in the southern part of Chile, erupted on 22 April 2015. The space–time evolutions (distribution and transport) of its aerosol plume are investigated by combining satellite (CALIOP, IASI, OMPS), in situ aerosol counting (LOAC OPC) and lidar observations, and the MIMOSA advection model. The Calbuco aerosol plume reached the Indian Ocean 1 week after the eruption. Over the Reunion Island site (21° S, 55.5° E), the aerosol signal was unambiguously enhanced in comparison with background conditions, with a volcanic aerosol layer extending from 18 to 21 km during the May–July period. All the data reveal an increase by a factor of ∼ 2 in the SAOD (stratospheric aerosol optical depth) with respect to values observed before the eruption. The aerosol mass e-folding time is approximately 90 days, which is rather close to the value ( ∼ 80 days) reported for the Sarychev eruption. Microphysical measurements obtained before, during, and after the eruption reflecting the impact of the Calbuco eruption on the lower stratospheric aerosol content have been analyzed over the Reunion Island site. During the passage of the plume, the volcanic aerosol was characterized by an effective radius of 0.16 ± 0.02 µm with a unimodal size distribution for particles above 0.2 µm in diameter. Particle concentrations for sizes larger than 1 µm are too low to be properly detected by the LOAC OPC. The aerosol number concentration was ∼ 20 times higher that observed before and 1 year after the eruption. According to OMPS and lidar observations, a tendency toward conditions before the eruption was observed by April 2016. The volcanic aerosol plume is advected eastward in the Southern Hemisphere and its latitudinal extent is clearly bounded by the subtropical barrier and the polar vortex. The transient behavior of the aerosol layers observed above Reunion Island between May and July 2015 reflects an inhomogeneous spatio-temporal distribution of the plume, which is controlled by the localization of these dynamical barriers.
Abstract. This paper describes the aerosol measurements setup and results obtained during the BEXUS18 stratospheric balloon within the A5-Unibo (Advanced Atmospheric Aerosol Acquisition and Analysis) experiment performed on October 10th, 2014 in northern Sweden (Kiruna). The experimental setup was designed and developed by the University of Bologna with the aim of collecting and analyzing vertical profiles of atmospheric ions and particles together with atmospheric parameters (temperature, relative humidity and pressure) all along the stratospheric ascent of the BEXUS18 stratospheric balloon. Particles size distributions were measured with the MeteoModem Light Optical Aerosol Counter (LOAC) and air ion density was measured with a set of two commercial and portable ion counters. Though the experimental setup was based upon relatively low-cost and light-weight sensors, vertical profiles of all the parameters up to an altitude of about 27 km were successfully collected. The results obtained are useful for elucidating the relationships between aerosols and charged particles between ground level and the stratosphere with great potential in collecting and adding useful information in this field, also in the stratosphere where such measurements are rare. In particular, the equipment detected coherent vertical profiles for particles and ions, with a particularly strong correlation between negative ions and fine particles, possibly resulting from proposed associations between cosmic rays and ions as previously suggested. In addition, the detection of charged aerosols in the stratosphere is in agreement with the results obtained by a previous flight and with simulations conducted with a stratospheric ion-aerosol model. However, further measurements under stratospheric balloon flights equipped with a similar setup are needed to reach general conclusions on such important issues.
Abstract. The study of aerosols in the troposphere and in the stratosphere is of major importance both for climate and air quality studies. Among the numerous instruments available, optical aerosol particles counters (OPCs) provide the size distribution in diameter range from about 100 nm to a few tens of µm. Most of them are very sensitive to the nature of aerosols, and this can result in significant biases in the retrieved size distribution. We describe here a new versatile optical particle/sizer counter named LOAC (Light Optical Aerosol Counter), which is light and compact enough to perform measurements not only at the surface but under all kinds of balloons in the troposphere and in the stratosphere. LOAC is an original OPC performing observations at two scattering angles. The first one is around 12°, and is almost insensitive to the refractive index of the particles; the second one is around 60° and is strongly sensitive to the refractive index of the particles. By combining measurement at the two angles, it is possible to retrieve the size distribution between 0.2 and 100 µm and to estimate the nature of the dominant particles (droplets, carbonaceous, salts and mineral particles) when the aerosol is relatively homogeneous. This typology is based on calibration charts obtained in the laboratory. The uncertainty for total concentrations measurements is ±20 % when concentrations are higher than 1 particle cm−3 (for a 10 min integration time). For lower concentrations, the uncertainty is up to about ±60 % for concentrations smaller than 10−2 particle cm−3. Also, the uncertainties in size calibration are ±0.025 µm for particles smaller than 0.6 µm, 5 % for particles in the 0.7–2 µm range, and 10 % for particles greater than 2 µm. The measurement accuracy of submicronic particles could be reduced in a strongly turbid case when concentration of particles > 3 µm exceeds a few particles cm−3. Several campaigns of cross-comparison of LOAC with other particle counting instruments and remote sensing photometers have been conducted to validate both the size distribution derived by LOAC and the retrieved particle number density. The typology of the aerosols has been validated in well-defined conditions including urban pollution, desert dust episodes, sea spray, fog, and cloud. Comparison with reference aerosol mass monitoring instruments also shows that the LOAC measurements can be successfully converted to mass concentrations.